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E.g. Car A travels round a circle of radius 30 m at 
33 m s −1 . Car B travels round a circle of radius  
25 m at 1.2 rad sec-1. Which car is moving the 
faster? 

 
 
 
 
 
 
 
 
 

Forces required for circular motion  

 

Summary  M3  Topic 1:  Circular Motion − 1 

Angular Speed and Velocities 
A force is required to keep a body moving in a  
circle as its velocity is always changing. 
If a particle at P is moving in a circle then the angle 
of OP with any fixed direction changes with time. 

 
 
 
 
 
 
 

 
 
 

Mechanics 3 
Version B: page 2 
Competence statements r 1, 2, 3, 4, 5, 6, 7, 8 
© MEI 

References: 
Chapter 1 
Pages 1-3 

Exercise 1A 
Q. 3, 8 

Example 1.1 
Page 4 

The position is:  
cos sin    

dVelocity:        tangential component: 
d

radial component :  0

Acceleration : tangential component : 
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Exercise 1B 
Q. 2 

E.g. The minute hand of my watch is 2 cm long. 
What is the speed of the tip of the hand? 

E.g. What is the speed of the second hand, which is 
2.1 cm long? 
 
 

2

Newton's 2nd Law ( ) may be applied in
the tangential and radial directions.

 Tangential component is  

Radial component is

F ma

mr
mvmr mr

r
2 2

θ

θ ω

=

− = − = −

d  is written as  or 
dt
θ θ ω

.

1

1 5 1

20.02 m,  2  rads per hour =  rads s
3600

0.02 2  ms 3.5 10 m s  (2 s.f.)
3600

r

v

πω π

π

−

− − −

= =

×
⇒ = ≈ ×

5 1 3 12.13.5 10 60 m s 2.2 10 m s  ( 2 s.f.)
2

v − − − −= × × × ≈ ×

E.g. A horizontal, circular bend on a railway track 
has a radius of 500 m and a train of mass m kg 
negotiates it at 60 mph. What is the lateral force,  
R N, between its wheels and the rails in terms  
of m? 
 1

2 2

60 mph 26.8 m s
26.8 1.44
500

vR ma m m
r

−≈

= = = =

1

1

If linear speeds are compared,
Car B: 1.2 2.5 30 m s
so car A has greater linear speed.
If angular speeds are compared,

33Car A: 33, 30 1.1 rad s
30

So B has greater angular speed.

v r

v r

ω

ω

−

−

= = × =

= = ⇒ = =

E.g. One end of a light inextensible string of length 
0.8 m is attached to a point V. The other end is  
attached to the point O which  
is 0.4 m vertically below P.  
A small smooth bead, B, of  
mass 0.02 kg is threaded on  
the string and moves in a  
horizontal circle, with centre O  
and radius 0.3 m. OB rotates  
with constant angular  
speed ω rad s-1. 

Find the tension in the string and ω. 

 
 

2 2

2

Res vert.   cos 0
50.02 0.025 ( 0.245...)
4

8Res. Hor.  sin
5

8 0.025 65.33...
5 0.02 0.3

8.1 (2 s.f.)

T mg

T g g

T T mr T mr

g

θ

θ ω ω

ω

ω

− =

⇒ = × = =

+ = ⇒ =

×
⇒ = =

× ×
⇒ =

 
V 

O B 

0.4 m 
0.5 m 

0.3 m 

Example 1.2 
Page 8 

Example 1.4 
Page 13 

T N 
T N 

θ 

0.02g N 

the positive 
radial direction 

the positive tangential 
direction 

Velocity 

Acceleration 



Banked Tracks - for motion in horizontal circle 
When there is “perfect banking” there will be no 
friction or lateral force due to rails, etc., so the only 
horizontal force acting will be the resolved part of 
the normal reaction, R. - i.e. F = 0 
 

If the angle of the banking is greater or less than 
that for perfect banking, then the body will stay on 
the circular track only if there is friction or lateral 
force. If there is friction (i.e. a road rather than 
rails) then it may be enough to hold the body on 
that circular motion or it may move to a circular 
motion with a greater or lesser radius. 
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Exercise 1B 
Q. 9 

2

2

Given that 0,

sin  

where cos

tan

F
mvR

r
R mg

vg
r

θ

θ

θ

=

=

=

⇒ =

E.g. A car of mass 1200 kg is moving horizontally at 
constant speed round a banked track which is a circle 
of radius 50 m. The bank is angled at 120. 
Find the force on the wheels if the speed is  
(i) 10.2 m s-1, (ii) 13 m s-1. 
(The diagram is opposite) 

 

( )

( )

( )

2

2

2 2

2

No vertical acceleration cos sin

Horizontally: sin cos

sin sin
cos

cos
sin sin cos

cos
sin cos sin
cos

10.2, 50, 12
2.035 2.035 0

13

R mg F
mv R F

r
mg Fmv F

r
mg F

mg F mvF mg
r

v r
F m
v

θ θ

θ θ

θ θ
θ

θ
θ θ θ

θ
θ θ θ
θ

θ

⇒ = +

= +

+
⇒ = +

+ +
=

+
= ⇒ = −

= = =

⇒ = − =

=

(i)   

(ii) , 50, 12
(3.306 2.037) 1522 N

N.B. You do not need to know the positive 
direction of  before resolving. If  had 
been taken positive up the plane you would 
simply have obtained the answer 1522 N

r
F m

F F

θ= =
⇒ = − =

− .
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Circular motion with constant angular  
acceleration 
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Exercise 1C 
Q. 3 

Motion in a vertical circle 
If a particle is constrained to move in a vertical 
circle (i.e. at the end of a rigid rod or on a wire) 
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Exercise 1D 
Q. 4 

E.g. A particle is swung in a vertical circle at the end 
of a light rod of radius r with initial speed u at the  
bottom of the circle. Find the condition for the  
particle to complete the circle. 

( )

( )

0

2 2

2
2

The particle completes the circle if 0 when 180
 i.e. cos 1
Given 2 1 cos  then if 0 and cos 1,

2 1 cos 4  so 4

v

v u rg v

u g g u rg
r

θ
θ

θ θ

θ

> =
= −

= − − > = −

> − = >

( )

2 2
0 0

2
0 0

0

The equations for motion with constant angular 
acceleration  are

= 2
1 1
2 2

where  is the initial angular speed.

t

t t t

α

ω ω α ω ω αθ

θ ω α θ ω ω

ω

+ = +

= + = +

Diagram 1 here 
E.g. A small ring of mass m is threaded onto a smooth 
vertical circular wire of radius 0.15 m. The ring is  
projected from the lowest point of the wire with speed 
2.1 m s−1. How far above the bottom of the wire does 
the ring reach? 

2

2

2 2

2 2

Using conservation of  mechanical energy:
KE + GPE = const; 
If we take GPE = 0 at the level of O 

1energy at A: 
2
1energy at P: cos
2

Since energy is conserved: 
1 1 cos
2 2

mu mgr

mv mgr

mu mgr mv mgr

v u

−

− θ

− = − θ

⇒ = − ( )2 1 cosgr − θ
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2

2

The ring stops when 0 and the angle is , 
1Energy at A 0.15
2

Energy when ring stops = 0 0.15 cos
Referred to the diagram opposite and conserving energy:
1 0.15 0.15cos
2

1 2cos
2

v

mu mg

mg

mu mg mg

θ

θ

θ

θ

=

= − ×

− × ×

− × = − ×

⇒ = − ×
2

0

0

.1 1 0.5 120
0.15

So the height reached is 0.15 - 0.15cos120 0.225 m

m
mg

θ+ = − ⇒ =

=

O 

Example 1.7 
Page 28 



 

Summary  M3  Topic 1:  Circular Motion − 3 

Mechanics 3 
Version B: page 4 
Competence statements  r 1, 2, 3, 4, 5, 6, 7, 8 
© MEI 

E.g. A particle is attached to the end of a light inex-
tensible string of length r and swung in a vertical  
circle with no air resistance. Find the least speed at the 
bottom of the circle for the particle to complete  
circular motion. 
Using the notation of Fig. 1 and the work opposite; 
If the speed at the bottom is u and that at the top is v 
then the conservation of energy gives 

 
 
 
 
 

When vertical circular motion breaks down (i.e. 
when the particle may leave the circular path) 
 
 - a particle on a light, inextensible string; no air 
resistance 

-motion on the inside of a vertical circle; no  
friction 

 
-motion on the outside of a circle; no friction 
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2

2

2 2

N2L towards the centre gives 

cos
The particle will remain moving 
in the circle if  0 

  cos

If this is so when cos 1 
(i.e at the top, with the maximum value for cos )

then  or 

T mg mr

T

r
g

r g v

θ ω

ωθ

θ
θ

ω

+ =

≥

⇒ ≤

=

≥ ≥  where  is the least speed and 
is the least angular velocity.

rg v ω

2

2

N2L towards the centre gives 

R cos
The particle will remain 
moving in the circle if R 0 

We require  cos

If this is so when cos 1 
( i.e. at the top, with the maxiumum value for cos )

then 

mg mr

r
g

θ ω

ωθ

θ
θ

+ =

≥

≤

=

2 2 or  where  is the least speed and 
 is the least angular velocity.

r g v rg vω
ω

≥ ≥

2

2

2

N2L towards the centre gives 

cos R
The particle will remain on
the surface of the circle
if  0 

We require cos

or  where  is the speed when the angle is .

mg mr

R

r
g

v cos v
rg

θ ω

ωθ

θ θ

− =

≥

≥

≤
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Exercise 1D 
Q. 5, 7 

2 2 2 2

2

2 2

1 1 2  so 4
2 2
Using the result that  derived opposite
we require 4 5

mu mv mgr v u rg

v rg
u rg rg u rg

= + = −

≥

− ≥ ⇒ ≥

E.g. A particle of mass 0.05 kg is gently displaced 
from rest from the top of a solid smooth sphere of 
radius 0.5 m. Find where it leaves the surface. 
Refer to Fig 3. 

 

2

1
2

1
2

1

N2L towards the centre  gives cos 0.05 0.5
If  is the angle where the particle leaves the surface

then 0 and at this point 0.05 cos 0.05 0.5

                             so 2 cos
Los

mg R

R g

g

θ ω
θ

θ ω

ω θ

− = × ×

= = × ×

=

( )

( )

1

2 2

2 2
1

2 1
12

2
1 1 1

1

0

s of GPE is (1 cos )
1 1Gain in KE is ( )
2 2

1Conserving energy gives (1 cos )
2

2 (1 cos )so 4 1 cos

But 2 cos  so  4 1 cos 2 cos  
26cos 4 cos
3

48.2  (3 s.f.

mgh mgr

mv m r

mr mgr

gr g
r

g g g

θ

ω

ω θ

θω θ

ω θ θ θ

θ θ

θ

= −

=

= −

−
= = −

= − =

⇒ = ⇒ =

⇒ = )

E.g. A particle is projected up the inside of a smooth 
sphere of radius r. Find the least angular speed at the 
bottom of the circle for the particle to complete  
circular motion. 
Using the notation of Fig. 2 and the work opposite; 
If the angular speed at the bottom is Ω and that at the 
top is ω then the conservation of energy gives 

 
 
 
 
 
 
 

Note that the solution is very similar to that above.  
All that has been done is to replace u by rΩ  and v 
with rω. 

2 2 2 2 2 2

2

2 2

1 1 42  so 
2 2
Using the result that  derived opposite

4 5we require 

gmr mr mgr
r

r g
g gr g
r r

ω ω

ω

Ω = + = Ω −

≥

⎛ ⎞Ω − ≥ ⇒ Ω ≥⎜ ⎟
⎝ ⎠

Fig. 3 

Fig. 2 

Fig. 1 
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E.g. A piece of light string is 50 cm long.  
Experiments have indicated that λ = 80 N. A mass of 
5 kg is hung from the string. Find the extension. 

 
 
 

Hooke's Law 
The tension in an elastic spring is proportional 
to the extension. If a spring is compressed the 
thrust is proportional to the decrease in length 
of the spring. 
If the natural length is l0 and the extension is x, 
resulting from a force T, then  
                             T = kx.  
where k is the stiffness.  

 
 

Work and Energy 
The total work done in stretching a string by x 
from its natural length l0 is given by 
 
 
 
 
This is known as the elastic potential energy. 
 (E.P.E.) 

 

Summary  M3  Topic 2:  Elastic strings and springs 

Strings and springs 
We sometimes model a string to be inexten-
sible. This is not always the case: strings and 
springs which stretch are said to be elastic. 
The length when there is no force attached to it 
is called the natural length. When stretched 
the increase in length is called the extension. 
A spring may be compressed. A string cannot 
be compressed. 
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Exercise 2C 
Q. 4 

Exercise 2B 
Q. 7 

Vertical motion 
When a particle attached to a spring is released 
from a point other than the equilibrium  
position then the principles of conservation of 
energy may be applied. 
Conservation of energy gives: 
Increase in KE + increase in GPE + increase in 
EPE = 0 
Care must be taken when an elastic string is 
raised above its equilibrium position as it will 
go slack rather than compress. 
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Exercise 2D 
Q. 4 

0

Or we write  

where  is called the 

T x
l
λ

=

λ modulus of  elasticity.

0

5 0.55  0.3062
80

Extension is 30.6 cm (3 s.f.).

gT g x x
l
λ ×

= = ⇒ = =

E.g. A light spring of natural length 50 cm is  
attached to a ceiling. When a mass of 4 g is hung in 
equilibrium, the extension is 5 cm. Find  
(i)   the tension in the spring,  
(ii)  the stiffness of the spring,  
(iii) the modulus of elasticity of the spring. 
Take g = 10 m s−2. 
 

(i)   T = mg = 0.004g = 0.04 N 
(ii)  T = kx ⇒ 0.04 = 0.05k ⇒ k = 0.8 N m−1 

 
 

E.g. Find the EPE stored in the example above when 
the system is in equilibrium.. 
 
 

A light buffer of natural length 50 cm has a modulus 
of elasticity 100 kN. 
(i)  What force will compress it to half its length? 
(ii) How much energy is stored in the buffer when it  
      is compressed to 20 cm. 

 
 

 
 

2 2

0

1Work done .
2 2

kx x
l
λ

= =

The Principle of Conservation of Energy 
The principle of conservation of energy may 
be used when the energy changes only involve 
(some of) KE, GPE and EPE. 

0

0

50(iii)   0.04 0.4N
5

xT x T
x x
λ λ= ⇒ = = × =

2 2 31 1 0.8 0.05 1 10 0.001 J
2 2

kx −= × × = × =

100000 0.25(i)  50kN
0.5

T x
l
λ ×

= = =

( )251(ii)  EPE  10 0.5 0.2 9000J
2 0.5

= − =
×

E.g. A light spring of stiffness 50 N m−1 can project 
a 50 g stone 5 m vertically. How much compression 
in the spring is required? 

 
21 2

2
2 0.05 9.8 5 0.313 m

50

mghkx mgh x
k

= ⇒ =

× × ×
= =

E.g. Suppose, in the example above, the mass is 
pulled down a further 10 cm and released from rest. 
Does the string go slack? 

21Total extension is 15 cm. EPE stored is 0.8 0.15 0.009 J
2

GPE gained by mass in being raised 15 cm is 
                                              0.004 10 0.15 0.006 J
As EPE >GPE the mass is still 

× =

× × =

2

2 1

moving upwards when the 
string goes slack. Its speed is given by 
1 0.004 0.009 0.006
2
so 1.5;  speed is 1.22 m s  (3 s.f.)

v

v −

× × = −

=



Oscillating motion 
• Suppose a particle oscillates about a central 

position, O, on the x-axis. 
• The particle moves between two points,     x 

= −a and x = +a. The distance a is called the 
amplitude of the motion. 

• The motion repeats itself in a cyclic fashion. 
The number of cycles per second is called 
the frequency, denoted by v. 

• The motion repeats itself after time T. The 
time interval, T, is called the period: it is 
the time for a complete cycle of the motion. 

 
The frequency is the reciprocal of the period.  

 
 
 

The S.I. unit for frequency is the Hertz. 1 Hertz 
is one cycle per second. 
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Exercise 3A 
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Simple Harmonic Motion 
The acceleration is proportional to the  
magnitude of the displacement from the centre 
point of the motion and is directed towards this  
centre point. 
If x is the displacement the SHM equation is 

 
 
 

In addition: 

E.g. The height, h m, of water in a harbour may be 
modelled over a short time by simple harmonic motion, 
with period 12 hours . At high water the depth of water 
is 6 m greater than the depth at low water. 

  
    
 

SHM as a function of time. 
Any motion of the form x = asinωt is a solution 
of the SHM equation since 
 
 
 
 
The solution above is a particular solution of the 
more general form 
 
 
(See next page for a list of expressions for 
SHM.) 

2 2 2 2 2  which gives ( )x x v a x= −ω = ω −

2 2

sin cos
sin

and so is a solution of the SHM equation

x a t v x a t
x a t x

= ω ⇒ = = ω ω

⇒ = − ω ω = −ω

References: 
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sin( )x C t= ω + ε

Example 3.1 
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E.g. An oscillating weight on the end of a light spring  
completes 48 cycles per minute. The amplitude is  
estimated as 5 cm. If the oscillation begins at the  
equilibrium point, write an equation of motion and find 
the greatest speed. 

E.g. If t = 0  at the middle of the motion then when  
t = 0, x = 0. 

 
     
 

 

If t = 0 at one end of the motion  then when  
t = 0, x = ±a. 

2  rads per hour.
6

Amplitude of oscillation = 3 m.

Maximum speed =  metres per hour.
2

100                                   = 2.62 cm per minute (3.s.f.).
60 2

T

a

π πω

πω

π

= =

=

≈
×

2

2
2

Assuming   0 when   0, 3sin
6

Checking gives cos , sin
2 6 12 6

 as required.
6

h t h t

h t h t

h h h

π

π π π π

π ω

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⇒ = − = −⎜ ⎟
⎝ ⎠

..

Using sin( ) we have 0 sin 0
giving sin

x C t a
x a t

ω ε ε ε
ω

= + = ⇒ =
=

Again, using sin( )

Taking    when   0 sin
2

giving sin cos
2

Taking    when   0 cos

x C t

x a t a a

x a t a t

x a t x a t

ω ε
πε ε

πω ω

ω

= +

= = ⇒ = ⇒ =

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

= − = ⇒ = −

( )

1

2

Let  be the displacement from the equilibrium point.
48 6048 cpm  Hz 
60 48

2 2 48 8 5.0265
60 5

2 480.05sin 0.05sin1.6
60

Max 0.251 m s  (3.s.f.)
Equation of motion: 25.27  (4 

x

v T

T

x t t

v a
x x x

π π πω

π π

ω

ω

−

= = ⇒ =

×
= = = =

×
= =

= =

= − = − s.f.)

  is directed towards O, so the force causing the 
    action must also be directed towards O.

 (and therefore the force)  0 when   0.
 has a maximum value at the extremes .
The maximum vel

x

x x
x x a

= =

= ±

ocity is when 0 and is 
2The period, .

x a

T

ω.
π

ω

= ±

=

1So v
T

=

( )
2 2 2 2

2 2 2 2 2

2 2 2

Also, given cos , cos

1 sin

So 

v x a t v a t

v a t a x

v a x

= = ω ω = ω ω

⇒ = − ω = −

= −

Example 3.2 
Page 89 



Alternative forms of the solution of the SHM 
equation 
Motion in a straight line of the form 
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Circular motion and SHM 
If a particle is moving at constant angular speed 
ω round a circle of radius a whose centre is O 
and the x-axis is a diameter, then the x coordi-
nate of its position is given by  

 
     
 

The simple pendulum References: 
Chapter 3 

Pages 115-119 

Exercise 3C 
Q. 8 

 

Oscillating Springs 
If a particle is suspended from a perfectly elastic 
light spring of natural length l0, and modulus of 
elasticity λ, then the equation of motion of  
oscillation is given by 
 
 
 

 
where x is the displacement from the equilib-
rium position. This is the standard equation for 
SHM with  

 
 

0

x x
ml
λ

= −

2 0

0

;   This gives a period of 2 ml
ml
λ

ω = π
λ

sin cos
or sin( )
or cos( ')
satisfy the equation 
and the motion is SHM.

x A t B t
x C t
x C t

x x2ω

= ω + ω
= ω + ε
= ω + ε

= −

2 2

cos    where 
and  is the angular speed.

cos  and sin
So cos
Use sin  when 0 at the centre of motion.
Use cos  when 0 at the extreme of 
the motion in the pos

x a t

x a t x a t
x a t x

x a t t
x a t t

θ θ ω
ω

ω ω ω

ω ω ω
ω
ω

= =

⇒ = = −

= − = −
= =
= =

itive direction.

Exercise 3D 
Q. 3 
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2 2

2

Consider the motion of a particle in a straight 
line where the displacement, ,  is given by

 2sin 3cos .
4 4

3cos sin
2 4 4 4

3sin cos
8 4 16 4

2
16

x

x t t

x t t

x t t

π π

π π π π

π π π π

π

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= −
2

sin 3cos
4 4 16

So the motion is SHM.

t t xπ π π⎛ ⎞⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

2

Also  2sin 3cos
4 4

sin cos cos sin
4 4

where cos 2 and sin 3
213 andcos 0.983 (3 s.f.)
13

13sin 0.983  (3 s.f.)
4

x t t

x t t

x t

π π

π πλ ε ε

λ ε λ ε

λ ε ε

π

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⇒ = +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= =

⇒ = = ⇒ =

⎛ ⎞⇒ = +⎜ ⎟
⎝ ⎠

E.g. A simple pendulum is in the form of a light rod 
of length 1.2 m with a heavy particle at the end. It is 
pulled to one side through an angle of 200 from the 
vertical and then released from rest.  Find 
(i)   the period, 
(ii)  the time to reach the lowest point, 
(iii) the angular speed at the lowest point. 
(Take g = 9.8 m s-2.) 

2(i)   8.166... 2.858...

2 Period = 2.20 s (3 s.f.)

(ii)  Motion is modelled by cos  
20       where 0.349... rad
180

 At lowest point 0 cos 0 0.5496... sec.
2

(iii) Speed = 

g
l

t

t t

a

ω ω

π
ω

θ α ω
πα

πθ ω
ω

ω

= = ⇒ =

⇒ ≈

=
×

= ≈

= ⇒ = ⇒ = ≈

= 10.3490 2.85773 0.9975 1 rad s .−× = ≈

E.g. How long should be a simple pendulum for a  
1 second “tick”. 
2 second period so  

2

2 2

4 0.993 m
4 4
T g gl

π π
= = ≈

In tangential direction:   sin

For small , sin giving  

This equation of motion is the SHM equation. 

The solution has period 2 .

The solution of the equation may be 

written as 

ml mg
g
l

lT
g

θ θ
θθ θ θ θ

π

θ α

= −

≈ ≈ −

=

= sin  where 

 is the maximum amplitude. Note that the 
equation for motion is the angular displacement 
of the pendulum.

g t
l

ε

α

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

θ 

mg 

R 
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E.g.1. The line y = x + 1 from x = 0 to x = 2 is  
rotated through 3600 about the x-axis. Find the  
volume of the solid formed.  

 
 
 
 
 
 
 

E.g.2. The curve y = x2 − 1 from y = 1 to y = 3 is  
rotated through 3600 about the y-axis. Find the  
volume of the solid formed.  

 
 
 
 
 
 

Volume of revolution about the x-axis 
If the curve y = f(x) between the ordinates x = a 
and x = b is rotated through 3600 about the x-axis 
then the volume of the resulting solid is given 
by: 
 
 
 
Note that  y must be replaced by f(x) before  
integrating. 
 

Volume of revolution about the y-axis 
If the curve x = f(y) between  y = c and y = d is 
rotated through 3600 about the y-axis then the 
volume of the resulting solid is given by: 
 
 
 
 
Note that  x must be replaced by f(y) before  
integrating. 

Summary  M3  Topic 4:  Volumes of revolution and  
                                centres of mass by integration 
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Centres of mass (c.o.m) 
For a volume of revolution about the x-axis: 
 
 
 
 
For a volume of revolution about the y-axis: 
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Centres of mass of standard shapes 

 
 
 
 
 
 

Composite bodies may be made by combining  
simpler shapes in some way. 
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Exercise 4B 
Q. 3, 6 

Centres of mass of plane regions 
For the lamina which is the area between the 
curve y = f(x), the x-axis, x = a and x = b. 

 
 
 
 
 
 
 

For the lamina which is the area between the 
curve x = f(y), the y-axis, y = c and y = d. 
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Exercise 4C 
Q. 4 

2 d
b

a

V y x= π∫

2 d
d

c

V x y= π∫

2 2d d 0
b b

a a

x y x xy x, y= =∫ ∫

2 2d d 0
d d

c c

y x y yx y, x .= =∫ ∫

2

d
2

   where d

d

d

d
c
d

c

c

x y
x

A A x y
y

xy y

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎝ ⎠

∫
∫

∫

2

d

   where d

d
2

b

b
a
b

a

a

xy x
x

A A y x
y y y

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎝ ⎠

∫
∫

∫

( ) ( )
2 2 2

22 2

0 0 0
23

2

0

d 1 d 2 1 d

8 264 2
3 3 3

V y x x x x x x

x x x

= π = π + = π + +

⎡ ⎤ π⎛ ⎞= π + + = π + + =⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∫ ∫ ∫

( )
3 3

2

1 1
32

1

d 1 d

9 13 1 6
2 2 2

V x y y y

y y

= π = π +

⎡ ⎤ ⎛ ⎞ ⎛ ⎞= π + = π + −π + = π⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫

32 3Solid hemisphere, radius 
3 8

Solid cone, height , rad

r r r

h

π

Solid shape                           Volume   Height of c.o.m. 
                                                             above plane base

21 1ius 
3 4

r r h hπ

2 1Hollow hemisphere, radius 2
2
1Hollow cone, height , radius 
3

r r r

h r rl h

π

π

Hollow shape                     Curved     Height of c.o.m. 
                                        surface area   above base
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Exercise 4B 
Q. 8 

E.g. The c.o.m. of a frustum which is the lower half 
of a solid cone, height h.  
The height of the frustum is  h/2 .    
Let the mass of cone be 8m.  
Then mass of cone cut off is m and mass of  
frustum is 7m. 

 
 

18 7
4 2 2 4

5 11 112 7 7
8 8 56

h h hm mx m

h x h x h x h

⎛ ⎞= + + ×⎜ ⎟
⎝ ⎠

⇒ = + ⇒ = ⇒ =

h/2 h/2  

x 
O 



 
 
 
 

Other dimensions 
[Area] means the dimensions of area which  
is L2. 
[Area] = L2   [Volume] = L3 
[Speed] = LT − 1 
[Acceleration] = LT-2 
[Force] = MLT − 2 
 
In any equation or formula with units there 
must be dimensional consistency. 
 
Dimensionless Quantities 
 
All numbers, including π and e, angles and 
trigonometrical ratios have no dimensions. 
 
 
Using dimensions to check relationships 
 
When all quantities are given in algebraic 
form, dimensional consistency can be used to 
check answers to problems. 
 
The dimensions of a quantity help to determine 
which units are appropriate. 
 

Finding the form of a relationship 
 
It is sometimes possible to determine the form 
of a relationship just by looking at the  
dimensions of the quantities 
 
1. There are three fundamental quantities -    
    Mass, Length and Time. 
 
2. Modelling assumptions are made in the  
    usual way. 
 
3. The method can only be used when a  
    quantity can be written as a product of  
    powers of other quantities. There are  
    restrictions on the number of quantities  
    involved. 

 

Summary  M3  Topic 5:  Dimensions and units 

The three fundamental dimensions 
 
                    Mass     Length    Time 
                      M             L          T 
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Exercise 5B 
Q. 2 

[ ] ( )

2

22 1 2 2

1E.g.  KE = 
2
1 M LT ML T
2

mv

KE mv − −⎡ ⎤⇒ = = =⎢ ⎥⎣ ⎦
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[ ]

2 2

2 2
2 2

2

2

2 2

E.g. Justify the dimensional consistency of the
1 1formula   sin  
2 2

where the variables have the usual meaning.

1 1 L ML M.
2 2 T T

L MLsin  M. .L
T T

mv mu mgh

mv mu

mgh

θ

θ

− =

⎡ ⎤ ⎡ ⎤ ⎛ ⎞= = =⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= =

E.g.     v =  u  +   at 
         [v] = [u + at] 
     Dimensions of L.H.S. are LT−1  
     Dimensions of R.H.S. are LT−1 and LT−2.T = LT−1  
        So the formula has dimensional consistency. 

E.g. Given that pressure = force per unit area, find 
the dimensions of pressure. 

 
 [ ] [ ]

[ ]
2

1 2
2

ForceForcePressure = Pressure 
Area Area

MLT ML T
L

−
− −

⇒ =

= =

E.g. the frequency, f, of the note emitted by an organ 
pipe of length a when the air pressure is p and the air 
density is d is believed to obey a law of the form 
                  f = kaαpβdγ  
where k is a dimensionless constant. 
Find the values of α, β and γ. 

 
 
 

[ ]

( ) ( )1 1 2 3

1 11 2 2

T L ML T ML

Equating:
For T:   1 2
For L:   0 3
For M:  0

1 1Solving gives , , 1
2 2

.

f ka p d f a p d a p d

k pf ka p d
a d

α β γ α β γ α β γ

β γα

β
α β γ
β γ

β γ α

− − − −

−−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⇒ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

− = −
= − −
= +

= = − = −

⇒ = =
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