MEI Structured Mathematics

Module Summary Sheets

Decision Mathematics 1 (Version B: reference to new book)

Topic 1: Algorithms
Topic 2: Graphs
Topic 3: Networks
Topic 4: Critical Path Analysis
Topic 5: Linear Programming
Topic 6: Simulation

Purchasers have the licence to make multiple copies for use within a single establishment
© MEI November 2004

References:
Chapter 1
Pages 7-9 problem, but are not guaranteed to find the optimal or complete solution.

Recursion - defining something in terms of itself .

```
Examples
Division by repeated subtraction (Pseudo
code)
Read A,B (A>B; A,B>0)
Counter=0
repeat
    Set A to A-B
    Increment Counter
until A<B
Write "Answer" Counter
Write "Remainder" A
Draw all connections between n points.
There are n points, so each can be con-
nected to n-1 others. Therefore we could
make n(n-1) connections, but we will then
have done each one twice. Therefore the
total is }1/2n(n-1)=1/2\mp@subsup{n}{}{2}-1/2
When }n\mathrm{ is large, 1/2n2 is considerably big-
ger than }1/2n\mathrm{ so this dominates the expres-
sion. Since }1/2\mp@subsup{n}{}{2}\mathrm{ is directly proportional to
n}\mp@subsup{n}{}{2}\mathrm{ , we say that this algorithm is O(n}
For example - Bin Packing algorithms
(see below)
```

Factorial: $10!=10 \times 9!=10 \times 9 \times 8!=$

Standard Types of Algorithm

 SearchingFinding a particular item in a list

Sorting
Placing all items in a list in the correct order

References:
Chapter 1
Pages 20-24

Exercise 1D
Q. 1

Exercise 1E Q. 4

Bin Packing
The process of allocating items to locations, given a set of items of specified sizes and a set of locations with specified capacities.

Mathematical

Leading to the calculation of a required value

NOTE: Syllabus requires knowledge of properties of algorithms in all topics.

Linear Every data item is checked
Binary For ordered data. Repeatedly examines the middle to decide which half contains the target.
Index Search the index to find the "page", then search the page.

Exchange Find the smallest and swap it with the first. Find the next smallest and swap it with the second; etc.
Bubble On the first pass compare adjacent items ($1^{\text {st }}$ with $2^{\text {nd }}$, $2^{\text {nd }}$ with $3^{\text {rd }}$ etc.), and swap if necessary. Repeat until all items sorted.
Quick Choose a pivot value and sort items into two sub-lists, containing items smaller and larger than the pivot respectively. Repeat algorithm on each sub-list until all sub-lists are of length 1 or 0 .

First fit Take each item in turn, placing it in the first available slot.
First Fit Decreasing - order the items in decreasing size then apply First Fit.

HCF, LCM, Factorial

[^0]```
References:
Chapter 2
Pages 43-45
```

References:
Chapter 2
Pages 47-50

Exercise 2A
Q. 4

## Terminology

Graph - collection of vertices \& edges
Sub graph - any set of edges \& vertices taken from a graph is a sub-graph

Vertex/Node - the dots in a graph (usually where 2 or more edges meet, but not necessarily)

Edge/arc - a line between two vertices
Isomorphic - two graphs are isomorphic if one can twisted into the shape of the other ie: by relabelling the vertices of one graph you can show that it is the same as the other

Weight - the weight of an edge is a number representing a real-world value, often distance or time

Multiple edges - two or more edges joining the same pair of vertices

Loop - an edge starting and finishing at the same vertex
Simple graph -a graph with no loops or multiple edges
Connected graph - a graph in which a route can be found between any pair of vertices (ie the graph is in one part)

Cycle - a route starting and finishing at the same vertex
Tree - a graph with no cycles
Degree of a vertex - the number of edges starting or finishing at that vertex

Handshake lemma - the sum of all the degrees in a graph is twice the number of edges (and therefore even); consequently there will always be an even number of odd vertices

Di-graph - a graph in which the edges indicate direction
Incidence matrix - a matrix representing the edges in a graph

The topic of graphs is fundamental to much of Discrete Maths, and the theory of graphs is a large topic in its own right. However, this course focuses on ways of using graphs. Exam questions could test you on your knowledge of graphs; they could also ask you to apply a graph to solve a practical problem. Questions like this in Ex 2A, include:2,3,4,5,9,12,15,16,17
Other questions, including some taken from past examinations of other syllabuses, involve terminology and notation not specified in this syllabus. Tackling these, and investigating the terms involved, will enhance your knowledge of this subject, and your modelling skills.
These questions include: $6,7,8,10,11,13,14$

Examples


These two graphs are isomorphic.


## Decision Mathematics 1

Version B: page 3
Competence statements g1, g2
© MEI


Exercise 3A
Q. 1

References:
Chapter 3
Pages 68-79

Exercise 3B Q. 1

Exercise 3C
Q. 2, 3

Exercise 3D

$$
\text { Q. } 4
$$

References:
Chapter 3
Pages 86-87

Exercise 3E Q. 4

Terminology
Network - a graph with weighted arcs (or edges)

Minimum connector - the smallest possible tree which leaves a graph connected (spanning tree)

## Kruskal's algorithm

1 Select the shortest edge in a network
2 Select the next shortest edge which does not create a cycle
3 Repeat step 2 until all vertices have been connected

## Prim's algorithm

1 Select any vertex
2 Select the shortest edge connected to that vertex
3 Select the shortest edge which connects a previously chosen vertex to a new vertex
4 Repeat step 3 until all vertices have been connected

Shortest path - the shortest route between any two nodes in a network

## Dijkstra's algorithm

Step 1 Begin by giving the start vertex permanent label 0 , and order label 1.

Put in temporary values for each vertex you can reach directly from the start.

Step 2 Pick the vertex with the smallest temporary value, and make that the permanent value. Put in the correct order label. Then update the temporary values for all the vertices you can reach directly from the vertex you've just made permanent.

Repeat step 2 (always looking at all the temporary values for the smallest), until you have a permanent value at your target vertex.

NB If at any stage you can choose between two equally good options, pick either; you will always pick the other one next.

Step 3 Trace back to find the route - but write it down forwards, giving the total distance covered.

NB If you find yourself with a choice of arcs when tracing back, your network will have more than one optimum solution.

## Decision Mathematics 1

Version B: page 4
Competence statements N1, N2, N3, N4
© MEI
Example

Example using Dijkstra, from A -D



Terminology
A Critical Path Analysis question will consist of a project to be completed by carrying out a number of tasks.

Activity - a task to be done which takes a defined amount of time. Represented by an edge on a graph.

Event - an instant in time when one or more activities start or finish. Represented by a vertex.

Precedence Table - lists each activity and those activities which must immediately precede it.

Critical Path - the set of edges (activities) which must be carried out at a fixed time for the project to be completed in the minimum time.

Event times - each event has an earliest and a latest time: these are the earliest that all incoming activities could finish, and the latest that all outgoing activities could commence, without affecting the minimum completion time.

Float - the amount of time by which an activity (not on the critical path) can be delayed or extended without affecting the critical path timing.

- independent float does not affect other activities
- interfering float means that it is dependent on other activities not using all of their float


## Resourcing

Resourcing is the task of finding how many people are required to complete the project in the minimum time.

1. Each task requires one person. In this case the critical path will usually be completed by a single person. The other tasks are scheduled (possibly making use of float time to delay the start times) so that the least number of people are required [there are links here to the concepts of bin-packing from the algorithms section].
2. Tasks require different numbers of people. A resource histogram should be drawn. Then, as above, start times are adjusted in an attempt to even out the requirments this is known as resource levelling.

Dummy Activity - these are represented by dotted or faint lines and are added for two reasons:

1. To avoid two activities sharing both start and finish events.
2. To ensure correct logic.

Example: if C is dependent on A and B , but D is only dependent on $B$


Example
Make a cup of instant black coffee

| Activity | Duration (secs) | Preceding <br> activities |
| :--- | :---: | :---: |
| A Fill Kettle | 20 | - |
| B Boil Kettle | 90 | A |
| C Put water in mug | 10 | B, D, E |
| D Put coffee in <br> mug | 20 | - |
| E Put sugar in mug | 15 | - |

The above precedence table leads to the following graph (activity network)


The events are shown as circles, the activities as edges. All precedences are maintained; a dummy activity is inserted after E so that each activity is uniquely defined by (start event, finish event).

The minimum completion time (assuming tasks can be done in parallel) is 120 seconds. The critical activities for this are A, B and C, since a delay in any of these would lead to a delay in the final completion time.

The event at the end of $E$ has an earliest time of 15 seconds (one cannot get there sooner), and a latest time of 110 seconds (since anything later than this would delay the start of C and hence the entire project).

Activity D has float time of 90 seconds (since it can start at 0 , must finish by 110, and takes 20 seconds itself).

## Decision Mathematics 1

Version B: page 5
Competence statements X1, X2, X3, X4, X5 (C) MEI



## Examples

What system of queuing will minimise customer waiting times in a bank?
How does an infectious disease spread through a population?

Queuing simulations are a common example
coins or dice
random number tables, random number generated from a calculator
including rejecting values where necessary

When modelling queuing it is necessary to find out the distributions for inter-arrival times and serving time.

All times are taken to the nearest minute
Any times which fall outside this range will be ignored.

| Inter-arrival time (mins) | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| probability | 0.2 | 0.5 | 0.3 |
| Random Numbers | $00-19$ | $20-69$ | $70-99$ |


| Service time (mins) | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| probability | $1 / 6$ | $1 / 2$ | $1 / 3$ |
| Random Numbers | $00-15$ | $16-63$ | $64-95$ |

The simulation is usually set out in a table.

| cus- <br> tomer | RND | Arri- <br> val <br> time | Ser- <br> vice <br> start | RND | Ser- <br> vice <br> time | Ser- <br> vice <br> ends | Que- <br> ing <br> time |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | 0 | 58 | 2 | 2 | 0 |
| 2 | 13 | 1 | 2 | 73 | 3 | 5 | 1 |
| 3 | 24 | 3 | 5 | 11 | 1 | 6 | 2 |
| 4 | 88 | 6 | 6 | 39 | 2 | 8 | 0 |

Average queuing time $=\frac{\text { total queuing time }}{\text { number of customers }}=\frac{3}{4}$ min per customer
Note: the above simulation starts at the arrival of the first customer, otherwise an initial arrival time would be needed.
A simulation would normally have a much longer run than this.
A simulation should be performed several times to get a more reliable result.


[^0]:    Decision Mathematics 1
    Version B: page 2
    Competence statements A1, A2, A3, A4
    (C) MEI

