Q1

Remember bisection method. Looks at boundary given by change of sign, find the midpoint, and find sign of $f(x)$. It will take the place of the boundary with same sign for $f(x)$.
i)
$f(x)=0 \rightarrow x^{2}+\sqrt{1+x}-3=0$
$f(1)=1+\sqrt{2}-3=\sqrt{2}-2<0 \quad$ Hence change of sign, root lies between $1 \& 1.4$
$f(1.4)=1.4^{2}+\sqrt{2.4}-3=0.509>0$
We now look at midpoint 1.2
$f(1.2)=1.2^{2}+\sqrt{2.2}-3=-0.0767<0$ root lies in $\{1.2,1.4\}$ with max error 0.1
We now look at midpoint 1.3
$f(1.3)=1.3^{2}+\sqrt{2.3}-3=0.2065>0$ root lies in $\{1.2,1.3\}$ with max error 0.05
We now look at midpoint 1.25
$f(1.25)=1.25^{2}+\sqrt{2.25}-3=0.0625>0$ root lies in $\{1.2,1.25\}$ with max error 0.025
Midpoint 1.225
Hence we have an approximation to the root of 1.225 with max error of 0.025
Note max error reduces by factor 2 each time. So next will give 0.0125 , then 0.00625 and then 0.003125 . Hence we need 3 more iteration to achieve less than 0.005 max error.

Q2 We have to find $\int_{0}^{.5} \frac{1}{1+x^{4}} \mathrm{~d} x$

$$
M_{1}=h\left[y_{m 1}\right]=h[f(0.25)]=0.5 * \frac{1}{1+0.25^{4}} \Rightarrow M_{1}=0.498054
$$

and

$$
T_{1}=\frac{h}{2}\left[y_{0}+y_{1}\right]=\frac{0.5}{2}[f(0)+f(0.5)]=0.25^{*}\left(\frac{1}{1+0^{4}}+\frac{1}{1+0.5^{4}}\right) \Rightarrow T_{1}=0.485294
$$

We know

$$
S_{n}=\frac{2 M_{n}+T_{n}}{3} \Rightarrow S_{1}=\frac{2 M_{1}+T_{1}}{3}=\frac{2 * 0.498054+0.485294}{3} \Rightarrow S_{1}=0.493801
$$

For extrapolation use

$$
S_{\infty}=S_{2 n}+\frac{S_{2 n}-S_{n}}{15} \Rightarrow S_{\infty}=0.493952+\frac{(0.493952-0.493801)}{15} \Rightarrow S_{\infty}=0.493962
$$

Note the have not used the full expansion so different answer.

Cosine rule
$a^{2}=3^{2}+4^{2}-2 * 4 * 3 \cos (90+\varepsilon) \Rightarrow a=\sqrt{25-24 \cos 95} \Rightarrow a=5.204972$
This is the exact answer. If we approximate $\cos (90+\varepsilon)=-\frac{\pi \varepsilon}{180}=-\frac{\pi 5}{180}=-\frac{\pi}{36}$
then the approximation A is given by $A=\sqrt{25-24 \frac{-\pi}{36}} \Rightarrow A=5.205228$
Absolute Error $=|a-A|=|5.204972-5.205228|=0.000255$
Relative Error is $\frac{|a-A|}{a}=0.000049$

Q4

As $\quad X=x(1+r) \Rightarrow r=\frac{X}{x}-1=\frac{X-x}{x} \quad r$ is the relative error.
X^{n} is approx to $x^{n} \Rightarrow X^{n} \approx x^{n}(1+r)^{n}$ Now for the last term consider the binomial expansion of the bracket. Remember the first terms are always of the form $1+n r+$ something with $r^{2}+.$. We are asked to keep only 2 first terms so $X^{n} \approx x^{n}(1+n r)$
And the relative error is $\frac{X^{n}}{x^{n}} \approx(1+n r) \Rightarrow \frac{X^{n}-x^{n}}{x^{n}} \approx n r$

$$
22
$$

Relative Error in approx to $\pi=\frac{22}{7}$ is given by $\frac{\frac{22}{7}-\pi}{\pi}=4.025 \times 10^{-4}$
Hence approx relative error in
π^{2} is 2 times error in $\frac{22}{7}=2 \times 4.025 \times 10^{-4}=8.050 \times 10^{-4} \quad$ and in
$\sqrt{\pi}$ is 0.5 times error in $\frac{22}{7}=0.5 \times 4.025 \times 10^{-4}=2.013 \times 10^{-4}$

Q5

Lagrange's formula give for three points

$$
\begin{aligned}
& f(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{3}-x_{2}\right)} f\left(x_{2}\right)+\frac{\left(x-x_{2}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{3}\right)\left(x_{1}-x_{3}\right)} f\left(x_{3}\right) \\
& f(x)=\frac{(x-0)(x-4)}{(1)(5)} 3+\frac{(x-4)(x+1)}{(-1)(4)} 2+\frac{(x-0)(x+1)}{(-4)(-5)} 9=\frac{3}{5}(x)(x-4)-\frac{1}{2}(x-4)(x-1)+\frac{9}{20} x(x+1) \\
& f(x)=0.55 x^{2}-0.45 x+2
\end{aligned}
$$

and
$f^{\prime}(x)=1.1 x-0.45$

Q6

You need to indicated clearly your root, initial estimate and intersection of tangent on your graph.

For graph use TABLE mode in calculator between 0 and 1.5 and label diagram! Note the root you want to find is non-zero, i.e. between 1 and 1.2

Newton-Raphson method
The formula is $x_{r+1}=x_{r}-\frac{f\left(x_{r}\right)}{f^{\prime}\left(x_{r}\right)}=x_{r}-\frac{\tan x_{r}-2 x_{r}}{\tan ^{2} x_{r}-1}$ with the derivative given in text. Use 'program' with $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ in calculator. After 4 iterations we get
i xk

0	1.2
1	1.169346024
2	1.165609311
3	1.165561193
4	1.165561185

Note the last 2 agree to 4 d.p. i.e root $=1.1656$ Note if first order convergence then we ratios of difference must be deceasing very fast.

$$
\begin{array}{rrl}
\text { x1.2 } & 0.034438815 & \text { ratios } \\
1.169346024 & 0.003784839 & 0.1218998 \\
1.165609311 & 4.81259 \mathrm{E}-05 & 0.0128771 \\
1.165561193 & 7.83367 \mathrm{E}-09 & 0.0001628
\end{array}
$$

As the ratios decrease very rapidly we must have $1^{\text {st }}$ order convergence.

Q6

You need to establish the difference table

X	$\mathrm{G}(\mathrm{x})$	$\Delta \mathrm{x}$	$\Delta^{2} \mathrm{x}$
1	2.87		
2	4.73	1.86	
3	6.23	1.5	-0.36
4	7.36	1.13	-0.37
5	8.05	0.69	-0.44

We can see that the second differences are not sufficiently constant for the points to be fitted by a quadratic.

x	$\mathrm{G}(\mathrm{x})$	$\Delta \mathrm{x}$	$\Delta^{2} \mathrm{x}$
1	2.87		
3	6.23	3.36	
5	8.05	1.82	-1.54

The approximation to $g(x)$ using this table is

$$
\begin{aligned}
Q(x) & =g_{0}+\frac{\left(x-x_{0}\right)}{h} \Delta g_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2 h^{2}} \Delta^{2} g_{0} \\
& =2.87+\frac{(x-1)}{2} \times 3.36+\frac{(x-1)(x-3)}{8} \times-1.54 \\
& =0.6125+0.245 x-0.1925 x^{2}
\end{aligned}
$$

The error and relative errors are

				relative error
$Q(x)$		$g(x)$	error	
2	4.7425	4.73	0.0125	0.002643
			-	
4	7.3325	7.36	0.0275	-0.00374

