MEI M3 JANUARY 2009 WORKED SOLUTIONS

Q1 i) dimensions of force $[F]=\frac{[\mathrm{M}][\mathrm{L}]}{[\mathrm{T}]^{2}}$ and of density $[\rho]=\frac{[\mathrm{M}]}{[\mathrm{L}]^{3}}$
ii) The viscosity η is defined by $F=\frac{\eta A\left(v_{2}-v_{1}\right)}{d} \quad$ where F is a force, d is a distance, dimension [L] and
v is a velocity, dimension $[v]=\frac{[\mathrm{L}]}{[\mathrm{T}]}$ and Area A has $[\mathrm{L}]^{2}$.
Hence we have $\frac{[\mathrm{M}][\mathrm{L}]}{[\mathrm{T}]^{2}}=\frac{[\eta][\mathrm{L}]^{2}}{[\mathrm{~L}]} \frac{[\mathrm{L}]}{[\mathrm{T}]}=\frac{[\eta][\mathrm{L}]^{2}}{[\mathrm{~T}]}$ and for both sides to be dimensionally consistent we need $[\eta]=[M][\mathrm{L}]^{-1}[\mathrm{~T}]^{-1}$ iii)

We are given $v=\frac{2 a^{2} \rho g}{9 \eta} \quad$ where a is radius, [L]. Hence we require that RHS has dimensions of $[\mathrm{L}][\mathrm{T}]^{-1} . \quad[\mathrm{RHS}]=\frac{[\mathrm{L}]^{2}[\mathrm{M}][\mathrm{L}]^{-3}[\mathrm{~L}][\mathrm{T}]^{-2}}{[\mathrm{M}][\mathrm{L}]^{-1}[\mathrm{~T}]^{-1}}=\frac{[\mathrm{T}]^{-1}}{[\mathrm{~L}]^{-1}}=[\mathrm{L}][\mathrm{T}]^{-1} \quad$ as required
iv) If $R=\rho w^{\alpha} v^{\beta} \eta^{\gamma} \quad$, is dimensionless then we need $[\rho][w]^{\alpha}[v]^{\beta}[\eta]^{\gamma}$ to be also dimensionless, with w a length [L].

Now

$$
[\rho][w]^{\alpha}[\nu]^{\beta}[\eta]^{\gamma}=[\mathrm{M}][\mathrm{L}]^{-3}[\mathrm{~L}]^{\alpha}\left([\mathrm{L}][\mathrm{T}]^{-1}\right)^{\beta}\left([\mathrm{M}][\mathrm{L}]^{-1}[\mathrm{~T}]^{-1}\right)^{\gamma}
$$

$$
=[\mathrm{M}]^{\gamma+1}[\mathrm{~L}]^{-3+\alpha+\beta-\gamma}[\mathrm{T}]^{-\beta-\gamma}
$$

$\begin{aligned} \gamma+1 & =0 \\ \text { Hence we require }-3+\alpha+\beta-\gamma & =0 \\ -\beta-\gamma & =0\end{aligned}$ which gives $\begin{aligned} & \gamma=-1 \\ & \beta=1 \\ & \\ & \alpha=1\end{aligned}$
v)

Calculate the Reynolds number for real case gives $\mathrm{R}=9.375 \times 10^{7}$
Use this value with new input keeping v the velocity as unknown. Gives $v=260 \mathrm{~m} / \mathrm{s}$

MEI M3 JANUARY 2009 WORKED SOLUTIONS

Note: Tension is the same everywhere in the string.

Also from diagram

$$
\cos \alpha=\frac{1.2}{2}=\frac{3}{5} \text { Hence } \sin \alpha=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}
$$

$$
\cos \beta=\frac{1.2}{1.3}=\frac{12}{13}
$$

$$
\sin \beta=\sqrt{1-\left(\frac{12}{13}\right)^{2}}=\frac{5}{13}
$$ avoid using calculator!

Equations of motions Radial direction $-T \cos \alpha-T \cos \beta=-m a_{r}$
Vertical direction $T \sin \alpha-T \sin \beta-m g=0$
i) From (2) we find $T=\frac{m g}{(\sin \alpha-\sin \beta)}=6.37 \mathrm{~N}$

From in (1) $\frac{T(\cos \alpha+\cos \beta)}{m}=a_{r}$ and using $a_{r}=\frac{v^{2}}{r}$ we get
$v=\sqrt{\frac{a_{r}}{r}}=\sqrt{\frac{\frac{T(\cos \alpha+\cos \beta)}{m}}{r}}=\sqrt{\frac{r T(\cos \alpha+\cos \beta)}{m}}=6.57 \mathrm{~m} / \mathrm{s}$
b) i)At highest position we require that $m g=m a_{r}$, hence as a $a_{r}=\frac{v^{2}}{r}$ we get $v=\sqrt{r g}=\sqrt{12.25}=3.5 \mathrm{~m} / \mathrm{s}$
ii)

Eq of motion Radial $\quad T+m g \cos 60=m a_{r}$

Transverse $\quad m g \sin 60=m a_{T}$

From (2) we get $g \sin 60=a_{T} \Rightarrow a_{T}=8.49 \mathrm{~ms}^{-2}$
In (1) we have two unknowns so we need to obtains extra information.
We know that E is conserved, i.e. $\triangle K E+\triangle P E=0$, between the positions at the top $\theta=0$ and at $\theta=60^{\circ}$.
$\Delta K E=\frac{1}{2} m v^{2}-\frac{1}{2} m 3.5^{2} \quad$ and $\quad \Delta P E=m g r \cos 60-m g r=m g r(\cos 60-1)=-0.5 m g r$

$$
\Delta K E+\Delta P E=\frac{1}{2} m v^{2}-\frac{1}{2} m 3.5^{2}-0.5 m g r=0
$$

So

$$
v^{2}=g r+3.5^{2}
$$

We can now put a_{r} into (1) to get $T=2.94 \mathrm{~N}$
and as $a_{r}=\frac{v^{2}}{r} \Rightarrow a_{r}=\frac{g r+3.5^{2}}{r} \Rightarrow a_{r}=19.6$

MEI M3 JANUARY 2009 WORKED SOLUTIONS Q3

We know $l_{0}=25 m \quad k=\frac{\lambda}{l_{0}}=\frac{980}{25}=38.2 \mathrm{Nm}^{-1}$
i) Now in eq. we have $F=k d=m g \Rightarrow d=\frac{m g}{k}=1.25$

$$
T-m g=-m \frac{d^{2} x}{d t^{2}} \quad \text { and as } T=k(d+x)
$$

ii) $\quad k(d+x)-m g=-m \frac{d^{2} x}{d t^{2}} \quad$ and as $k d=m g$

$$
-\frac{k x}{m}=\frac{d^{2} x}{d t^{2}} \Rightarrow-\frac{38.2 x}{5}=\frac{d^{2} x}{d t^{2}} \Rightarrow-7.84 x=\frac{d^{2} x}{d t^{2}}
$$

iii) The general solution for SHO is $\quad x=A \cos (\omega t)+B \sin (\omega t)$ (1) with $\omega^{2}=7.84 \Rightarrow \omega=2.8 \quad$ and the velocity is $v=-A \omega \sin (\omega t)+B \omega \cos (\omega t)$

The initial conditions are $t=0$

$$
\begin{aligned}
& x=-1.25 m \quad v=8.4 m / s \\
& \text { into }(1) \&(2) \text { gives } \underline{A}=-1.25, B=3
\end{aligned}
$$

Hence $\quad x=-1.25 \cos (2.8 t)+3 \sin (2.8 t)$ and $v=1.25 \times 2.8 \sin (2.8 t)+3 \times 2.8 \cos (2.8 t)$
and using compound angle formula $R=\sqrt{a^{2}+b^{2}}$ and $\phi=\tan ^{-1}(b / a)$
e.g for $v \quad R=\sqrt{(-1.25)^{2}+(3)^{2}}=3.25$ and $\phi=\tan ^{-1}(3 / 1.25)=1.176$
gives $\quad x=-3.25 \cos (2.8 t+1.176)$ and differentiate for $\quad v=9.1 \sin (2.8 t+1.176)$

Hence max x and v are when the cos terms are equal to one, i.e. the amplitudes.

$$
\begin{array}{ll}
x_{\max }=-3.25 m & \text { iv) } \quad v_{\max }=9.1 \mathrm{~m} / \mathrm{s} \\
\hline
\end{array}
$$

v) When the rope becomes taut we know that $v=8.4 \mathrm{~m} / \mathrm{s}$, given in question, and $\mathrm{t}=0$

When the mass is at rest need to solve

$$
\begin{aligned}
& 0=9.1 \sin (2.8 t+1.176) \Rightarrow \sin ^{-1}(0)=0, \pi, \ldots \\
& \sin ^{-1}(0)=0 \Rightarrow 0=2.8 t+1.176 \Rightarrow t=-0.42 \\
& \sin ^{-1}(0)=\pi \Rightarrow t=\frac{\pi-1.176}{2.8}=0.702
\end{aligned}
$$

we need first time it gets to zero, i.e first positive value. $t=0.702$

MEI M3 JANUARY 2009 WORKED SOLUTIONS Q4

a) $A \bar{y}=\int_{-a}^{a} \frac{y^{2}}{2} d x=\int_{-a}^{a} \frac{\left(a^{2}-x^{2}\right)}{2} d x=\frac{1}{2}\left[a^{2} x-\frac{x^{3}}{3}\right]_{-a}^{a}=\frac{1}{2}\left[\left(a^{3}-\frac{a^{3}}{3}\right)-\left(-a^{3}-\frac{-a^{3}}{3}\right)\right]=\frac{1}{2}\left(2 a^{3}-\frac{2 a^{3}}{3}\right)=\frac{2 a^{2}}{3}$ and as $A=\frac{1}{2} \pi a^{2}$ we have $\bar{y}=\frac{\frac{2}{3} a^{3}}{\frac{1}{2} \pi a^{2}}=\frac{4 a}{3 \pi}$.
b) i)First we need volume $\quad V=\pi \int_{0}^{h} y^{2} d x=\pi \int_{0}^{h}(m x)^{2} d x=\pi m^{2}\left[\frac{x^{3}}{3}\right]_{0}^{h}=\underline{\underline{\frac{\pi m^{2} h^{3}}{3}}}$

We now need to evaluate $\pi \int_{0}^{h} x y^{2} d x=\pi \int_{0}^{h} x(m x)^{2} d x=\pi m^{2}\left[\frac{x^{4}}{4}\right]_{0}^{h}=\underline{\underline{\frac{\pi m^{2} h^{4}}{4}}}$ and now we can find

$$
\bar{x}=\frac{\pi \int_{0}^{h} x y^{2} d x=}{\pi \int_{0}^{h} y^{2} d x}=\frac{\frac{\pi m^{2} h^{4}}{4}}{\frac{\pi m^{2} h^{3}}{3}}=\frac{3 h}{4}
$$

NOTE HOW THIS INDEPENDENT OF m

ii) Now using the result of part i) We refer to large cone as 1 , small cone as 2
$\bar{x}_{2}=\frac{3 h_{2}}{4}=0.825$ but this is from top G of small cone $(\mathrm{h}=1.1)$, which is at 1.3 (2.4-1.1) from top V of large cone. So if we choose top of large cone $(h=2.4)$ as our zero

$$
\bar{x}_{2}=1.3+0.825=2.125 \quad \text { and } \bar{x}_{1}=1.8
$$

Using $M_{2} \bar{x}_{2}+M \bar{x}=M_{1} \overline{x_{1}}$

with $M=M_{1}-M_{2}$, i.e. mass cut = mass of large cone minus mass of small one.
Now the cone are uniform, hence mass is proportional to volume and we can use these instead.
So that $\bar{x}=\frac{M_{1} \overline{x_{1}}-M_{2} \bar{x}_{2}}{M}=\frac{V_{1} \overline{x_{1}}-V_{2} \bar{x}_{2}}{V_{1}-V_{2}}$. The volumes are given by $V=\frac{\pi r^{2} h}{3}$, hence

$$
\bar{x}=\frac{\frac{\pi r_{1}^{2} h_{1}}{3} \bar{x}_{1}-\frac{\pi r_{2}^{2} h_{2}}{3} \bar{x}_{2}}{\frac{\pi r_{1}^{2} h_{1}}{3}-\frac{\pi r_{2}^{2} h_{2}}{3}}=\frac{r_{1}^{2} h_{1} \bar{x}_{1}-r_{2}^{2} h_{2} \bar{x}_{2}}{r_{1}^{2} h_{1}-r_{2}^{2} h_{2}}=\frac{0.7^{2} \times 2.4 \times 1.8-0.4^{2} \times 1.1 \times 2.125}{0.7^{2} \times 2.4-0.4^{2} \times 1.1}=1.74 \mathrm{~m}
$$

iii) If the cone hangs in equilibrium form Q the line $\mathrm{Q} \bar{x}$ is perpendicular to VA.

The angle $\overline{\mathrm{Q}} \overline{\bar{x}}$ is given by $\tan ^{-1}\left(\frac{\text { radius of large cone }}{\text { height of large cone }}\right)=\tan ^{-1}\left(\frac{0.7}{2.4}\right)=0.2838$
And

$$
\mathrm{VQ}=\bar{x} \cos (0.2828)=1.67
$$

