MEI M3 **JANUARY 2009 WORKED SOLUTIONS**

Q1 i) dimensions of force
$$[F] = \frac{[M][L]}{[T]^2}$$
 and of density $[\rho] = \frac{[M]}{[L]^3}$

ii) The viscosity η is defined by $F = \frac{\eta A(v_2 - v_1)}{d}$

F is a force, d is a distance, dimension [L] and

v is a velocity, dimension $[v] = \frac{[L]}{[T]}$ and Area A has $[L]^2$.

Hence we have $\frac{[M][L]}{[T]^2} = \frac{[\eta][L]^2}{[L]} \cdot \frac{[L]}{[T]} = \frac{[\eta][L]^2}{[T]} \text{ and for both sides to be}$

dimensionally consistent we need $[\eta] = [M][L]^{-1}[T]^{-1}$

iii)

We are given $v = \frac{2a^2 \rho g}{9n}$ where a is radius, [L]. Hence we require that RHS has

dimensions of $[L][T]^{-1}$. $[RHS] = \frac{[L]^2 [M][L]^{-3} [L][T]^{-2}}{[M][L]^{-1} [T]^{-1}} = \frac{[T]^{-1}}{[L]^{-1}} = [L][T]^{-1}$ as required

iv) If $R = \rho w^{\alpha} v^{\beta} \eta^{\gamma}$, is dimensionless then we need $[\rho][w]^{\alpha} [v]^{\beta} [\eta]^{\gamma}$ to be also dimensionless, with w a length [L].

Now
$$[\rho][w]^{\alpha}[v]^{\beta}[\eta]^{\gamma} = [M][L]^{-3}[L]^{\alpha}([L][T]^{-1})^{\beta} ([M][L]^{-1}[T]^{-1})^{\gamma}$$

$$= [M]^{\gamma+1}[L]^{-3+\alpha+\beta-\gamma}[T]^{-\beta-\gamma}$$

$$\gamma + 1 = 0 \qquad \gamma = -1$$
Hence we require $-3 + \alpha + \beta - \gamma = 0$ which gives $\beta = 1$ $-\beta - \gamma = 0$ $\alpha = 1$

v) Calculate the Reynolds number for real case gives $R=9.375x10^7$

Use this value with new input keeping v the velocity as unknown. Gives v=260 m/s

MEI M3 **JANUARY 2009 WORKED SOLUTIONS**

Note: Tension is the same everywhere in the string.

Note: Tension is the same everywhere in the string.

$$\cos \alpha = \frac{1.2}{2} = \frac{3}{5} \text{ Hence}$$

$$\cos \beta = \frac{1.2}{1.3} = \frac{12}{13} \text{ sin } \beta = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$$

$$\sin \beta = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \frac{5}{13}$$
avoid using calculator!

Equations of motions Radial direction $-T\cos\alpha - T\cos\beta = -ma_r$ (1) Vertical direction $T \sin \alpha - T \sin \beta - mg = 0$

i) From (2) we find
$$T = \frac{mg}{(\sin \alpha - \sin \beta)} = 6.37 \text{ N}$$

From in (1) $\frac{T(\cos \alpha + \cos \beta)}{m} = a_r$ and using $a_r = \frac{v^2}{r}$ we get

$$v = \sqrt{\frac{a_r}{r}} = \sqrt{\frac{T(\cos\alpha + \cos\beta)}{\frac{m}{r}}} = \sqrt{\frac{rT(\cos\alpha + \cos\beta)}{\frac{m}{m}}} = 6.57 \text{ m/s}$$

b) i)At highest position we require that $mg = ma_r$, hence as a $a_r = \frac{v^2}{r}$ we get

ii)
$$v = \sqrt{rg} = \sqrt{12.25} = 3.5m/s$$

$$a_{r} \qquad \text{Eq of motion}$$

$$Radial \qquad T + mg \cos 60 = ma_{r} \qquad (1)$$

$$Transverse \qquad mg \sin 60 = ma_{T} \qquad (2)$$

From (2) we get $g \sin 60 = a_T \Rightarrow \boxed{a_T = 8.49 \text{ ms}^{-2}}$

In (1) we have two unknowns so we need to obtains extra information.

We know that E is conserved, i.e. $\Delta KE + \Delta PE = 0$, between the positions at the top $\theta = 0$ and at $\theta = 60^{\circ}$.

$$\Delta KE = \frac{1}{2}mv^{2} - \frac{1}{2}m3.5^{2} \quad \text{and} \quad \Delta PE = mgr\cos 60 - mgr = mgr(\cos 60 - 1) = -0.5mgr$$

$$\Delta KE + \Delta PE = \frac{1}{2}mv^{2} - \frac{1}{2}m3.5^{2} - 0.5mgr = 0$$
So
$$\text{and as } a_{r} = \frac{v^{2}}{r} \Rightarrow a_{r} = \frac{gr + 3.5^{2}}{r} \Rightarrow \boxed{a_{r} = 19.6}$$

$$v^{2} = gr + 3.5^{2}$$

We can now put a_r into (1) to get \underline{T} = 2.94 N

MEI M3 JANUARY 2009 WORKED SOLUTIONS **Q3**

We know
$$l_0 = 25m$$
 $k = \frac{\lambda}{l_0} = \frac{980}{25} = 38.2 Nm^{-1}$

$$T - mg = -m\frac{d^2x}{dt^2}$$
 and as $T = k(d+x)$

ii)
$$k(d+x) - mg = -m\frac{d^2x}{dt^2}$$
 and as $kd = mg$

$$-\frac{kx}{m} = \frac{d^2x}{dt^2} \Rightarrow -\frac{38.2x}{5} = \frac{d^2x}{dt^2} \Rightarrow \boxed{-7.84x = \frac{d^2x}{dt^2}}$$

iii) The general solution for SHO is $x = A\cos(\omega t) + B\sin(\omega t)$ (1) with $\omega^2 = 7.84 \Rightarrow \boxed{\omega = 2.8}$ and the velocity is $v = -A\omega \sin(\omega t) + B\omega \cos(\omega t)$ (2)

The initial conditions are t = 0 x = -1.25m v = 8.4m/sinto (1) & (2) gives A=-1.25, B=3

Hence $x = -1.25\cos(2.8t) + 3\sin(2.8t)$ and $v = 1.25 \times 2.8\sin(2.8t) + 3 \times 2.8\cos(2.8t)$

and using compound angle formula $R = \sqrt{a^2 + b^2}$ and $\phi = \tan^{-1}(b/a)$ e.g for $v = R = \sqrt{(-1.25)^2 + (3)^2} = 3.25$ and $\phi = \tan^{-1}(3/1.25) = 1.176$

 $x = -3.25\cos(2.8t + 1.176)$ and differentiate for $v = 9.1\sin(2.8t + 1.176)$ gives

Hence max x and v are when the cos terms are equal to one, i.e. the amplitudes.

$$x_{\text{max}} = -3.25m$$
 iv) $v_{\text{max}} = 9.1m/s$

v) When the rope becomes taut we know that v=8.4 m/s, given in question, and t=0

When the mass is at rest need to solve

$$0 = 9.1\sin(2.8t + 1.176) \Rightarrow \sin^{-1}(0) = 0, \pi, \dots$$
$$\sin^{-1}(0) = 0 \Rightarrow 0 = 2.8t + 1.176 \Rightarrow t = -0.42$$

$$\sin^{-1}(0) = \pi \Rightarrow t = \frac{\pi - 1.176}{2.8} = 0.702$$

we need first time it gets to zero, i.e first positive value. $\underline{t}=0.702$

MEI M3 JANUARY 2009 WORKED SOLUTIONS Q4

a)
$$A\overline{y} = \int_{-a}^{a} \frac{y^2}{2} dx = \int_{-a}^{a} \frac{(a^2 - x^2)}{2} dx = \frac{1}{2} \left[a^2 x - \frac{x^3}{3} \right]_{-a}^{a} = \frac{1}{2} \left[\left(a^3 - \frac{a^3}{3} \right) - \left(-a^3 - \frac{-a^3}{3} \right) \right] = \frac{1}{2} \left(2a^3 - \frac{2a^3}{3} \right) = \frac{2a^2}{3}$$
 and as $A = \frac{1}{2} \pi a^2$ we have $\overline{y} = \frac{\frac{2}{3} a^3}{\frac{1}{2} \pi a^2} = \frac{4a}{3\pi}$.

b) i) First we need volume
$$V = \pi \int_{0}^{h} y^{2} dx = \pi \int_{0}^{h} (mx)^{2} dx = \pi m^{2} \left[\frac{x^{3}}{3} \right]_{0}^{h} = \frac{\pi m^{2} h^{3}}{3}$$

We now need to evaluate $\pi \int_0^h xy^2 dx = \pi \int_0^h x(mx)^2 dx = \pi m^2 \left[\frac{x^4}{4} \right]_0^h = \frac{\pi m^2 h^4}{4}$ and now we can find

$$\overline{x} = \frac{\pi \int_{0}^{h} xy^{2} dx = \frac{\pi m^{2} h^{4}}{4}}{\pi \int_{0}^{h} y^{2} dx} = \frac{\pi m^{2} h^{4}}{4} = \frac{3h}{4}$$
 NOTE HOW THIS INDEPENDENT OF m

ii) Now using the result of part i) We refer to large cone as 1, small cone as 2 $\bar{x}_2 = \frac{3h_2}{4} = 0.825$ but this is from top G of small cone (h=1.1), which is at 1.3 (2.4-1.1) from top V of large cone. So if we choose top of large cone (h=2.4) as our zero

$$\overline{x}_2 = 1.3 + 0.825 = 2.125$$
 and $\overline{x}_1 = 1.8$
Using $M_2 \overline{x}_2 + M \overline{x} = M_1 \overline{x}_1$

with $M = M_1 - M_2$, i.e. mass cut = mass of large cone minus mass of small one.

Now the cone are uniform, hence mass is proportional to volume and we can use these instead.

So that
$$\overline{x} = \frac{M_1 \overline{x_1} - M_2 \overline{x_2}}{M} = \frac{V_1 \overline{x_1} - V_2 \overline{x_2}}{V_1 - V_2}$$
. The volumes are given by $V = \frac{\pi r^2 h}{3}$, hence

$$\overline{x} = \frac{\frac{\pi r_1^2 h_1}{3} - \frac{\pi r_2^2 h_2}{3} - \frac{\pi r_2^2 h_2}{3}}{\frac{\pi r_1^2 h_1}{3} - \frac{\pi r_2^2 h_2}{3}} = \frac{r_1^2 h_1 \overline{x_1} - r_2^2 h_2 \overline{x_2}}{r_1^2 h_1 - r_2^2 h_2} = \frac{0.7^2 \times 2.4 \times 1.8 - 0.4^2 \times 1.1 \times 2.125}{0.7^2 \times 2.4 - 0.4^2 \times 1.1} = \boxed{1.74m}$$

iii) If the cone hangs in equilibrium form Q the line $Q \bar{x}$ is perpendicular to VA.

The angle
$$QV\bar{x}$$
 is given by $tan^{-1} \left(\frac{\text{radius of large cone}}{\text{height of large cone}} \right) = tan^{-1} \left(\frac{0.7}{2.4} \right) = 0.2838$

And
$$VQ = x \cos(0.2828) = 1.67$$