M2 June 2006 Worked Solutions
1/ Momentum: $2 \times 4+6 \times(-2)=8 \times V$ Str Maths M2 06S

$$
\therefore \quad v=-0.5 \mathrm{~ms}^{-1}
$$

$\begin{aligned} \text { Kintri energy } l_{0} t & =\frac{1}{2} \times 2 \times 4^{2}+\frac{1}{2} \times 6 \times 2^{2}-\frac{1}{2} \times 8 \times(0.5)^{2} \\ & =27 \mathrm{~J}\end{aligned}$
ii) After $\quad \vec{O}_{p}^{v_{p}} \quad \vec{O}_{Q}^{v_{Q}}$

Restitution: $V_{Q}-V_{P}=6 e=4$
Momentum $8-12=2 v_{p}+6 v_{Q}$

$$
\begin{equation*}
\Rightarrow \quad-2=v_{P}+3 v_{Q} \tag{1}
\end{equation*}
$$

(1) + (2)

$$
\begin{equation*}
\Rightarrow \quad 2=4 V_{Q} \quad \therefore V_{Q}=0.5 \mathrm{~ms}^{-1} \tag{2}
\end{equation*}
$$

(1) and above $\Rightarrow \quad V_{P}=-3.5 \mathrm{~ms}^{-1}$
b) Horizontal :no impulse $\Rightarrow \quad u \cos \left(\arcsin \frac{12}{13}\right)=v \cos \left(\operatorname{arsin} \frac{3}{5}\right)$

$$
\begin{aligned}
\operatorname{as} \begin{aligned}
u=26 \Rightarrow v & =\frac{26 \cos \left(\arcsin \frac{12}{13}\right)}{\cos \left(\arcsin \frac{\pi}{5}\right)}=\frac{26 \times \frac{5}{13}}{\frac{4}{5}} \\
v & =12.5 \mathrm{~ms}^{-1}
\end{aligned}
\end{aligned}
$$

$$
\text { Perpendicular to the plane } \begin{aligned}
e & =\frac{V \sin \left(\arcsin \frac{3}{5}\right)}{26 \sin \left(\operatorname{arasin} \frac{12}{13}\right)} \\
e & =\frac{12.5 \times \frac{3}{5}}{26 \times \frac{12}{13}} \\
e & =\frac{5}{16}
\end{aligned}
$$

M2 June 2006 Worked Solutions

2

Rod AB: Moments about $A: 2 \times 90-35=0$

$$
\therefore \quad S=60 \mathrm{~N} \text { upward. }
$$

Rod $B C$: Resolve horgatally $\Rightarrow T=O \mathrm{~N}$
Moments about R in $\operatorname{rod} B C$

$$
\begin{aligned}
0.5 \mathrm{~S}+3 \mathrm{~V} & =1 \times 75 \\
\therefore v & =\frac{75-60 \times 0.5}{3} \\
\therefore V & =15 \mathrm{~N}
\end{aligned}
$$

ii) Moments deut A

$$
\begin{aligned}
2 \cos 30 \times 90 & =3 \sin 60 v+3 \cos 60 u \\
90 \sqrt{3} & =\frac{3 \sqrt{3}}{2} v+3 \frac{u}{2} \\
180 \sqrt{3} & =3 \sqrt{3} v+3 u \\
\therefore 60 \sqrt{3} & =u+v \sqrt{3} .
\end{aligned}
$$

iii)

Moments about C
$3.5 \sin 60 V+2 \sin 60 \times 75=3.5 \cos 60 U$

$$
7 \frac{\sqrt{3}}{2} v+300 \frac{\sqrt{3}}{2}=\frac{7}{2} u
$$

$\therefore u-v \sqrt{3}=\frac{300 \sqrt{3}}{7}$
we had $u+v \sqrt{3}=60 \sqrt{3}$
add to get $2 u=\frac{720 \sqrt{3}}{7}$
$u=\frac{360 \sqrt{3}}{7}$
$\therefore v=\frac{60}{7}$
$O_{n} B C$ resolve horizontally $\Rightarrow F=U=\frac{360 \sqrt{3}}{7} \mathrm{~N}$

M2 June 2006 Worked Solutions

3/a)

Str Maths M2 06S

b)

$$
\begin{aligned}
& \mu=0.2 \quad \text { kinti everybte } \frac{1}{2} \times 11 \times \nabla^{2} \\
& P E \text { gaind }=11 \times 9.8 \times 1.5 \min \beta \\
& \text { Watt dre againt frituin }=0.2 \times(11 \times 9.8 \times \times 6 \beta) \times 1.5 \\
& \text { Watk dae ogaint air }=6 \mathrm{~J} / \times 1.5=9 \mathrm{~J} \\
& \frac{1}{2} \times 11 \times v^{2}=11 \times 9.8 \times 1.5 \times \sin \beta+0.2 \times 11 \times 9.8 \times \cos 8 \times 1.5+9 \\
& 5.5 \mathrm{~V}^{2}=101.0446154 \\
& r^{2}=18.37174825 \\
& v=4.286227741 \ldots \\
& v=4.286 \mathrm{~ms}^{-1}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \begin{array}{l}
\text { Las of } G P E=11 g y \sin \beta \\
\text { Gain of } k E=\frac{1}{2} \times 11 \times v^{2}
\end{array} \\
& \begin{array}{l}
\text { Wak dre against frictioi }=0.2 \times 11 \mathrm{gg} \cos \beta \times y \\
\text { Wokt dare aginst air }=6 y
\end{array} \\
& \text { Hten } \quad \operatorname{lig} y \sin \beta=\frac{1}{2} \times 11 v^{2}+0.2 \times 11 g \cos \beta y+6 y \\
& \therefore \quad y=1 \lg \sin \beta-2.2 \operatorname{gcos} \beta-6 \\
& \text { * } \begin{aligned}
& y=6.493869884 \ldots \\
& y-1.5=4.99389884 \ldots \\
&=4.99 \mathrm{~m} .
\end{aligned}
\end{aligned}
$$

M2 June 2006 Worked Solutions
4i)

$$
\begin{aligned}
& 100\binom{\bar{x}}{\bar{y}}=10\binom{5}{0}+30\binom{10}{15}+30\binom{20}{15}+30\binom{25}{30} \\
& 100\left(\frac{\bar{x}}{\bar{y}}\right)=\binom{1700}{1800} \\
& \bar{x}= \text { Str Maths M2 06s } \\
& 17=18
\end{aligned}
$$

ii) $(17,18,20)$
iii) MOMENTS about $D: 20 P=60 \times 3$ $p=9$
iv)

v) Moment about $O Z$

$$
\begin{aligned}
30 \times Q & =60 \times 17 \\
Q & =34 \mathrm{~N}
\end{aligned}
$$

Resolving horyiontally $F=Q$ As $34>30$ it slips first.

