M1 June 2016
1)i)

ii) \rightarrow

Rasolve $T \cos \alpha-F_{R}=M a$

$$
\begin{aligned}
40 \cos 60-F_{R} & =5 \times 1.5 \\
F_{R} & =40 \cos 60-5 \times 1.5=12.5 \mathrm{~N}
\end{aligned}
$$

2i)

$$
s=u t+\frac{1}{2} a t^{2}
$$

At A $\quad 12=u \times 2+\frac{1}{2} a(2)^{2}$
$t=2$
(1) $12=2 u+2 a$
$t=6 \quad 12=3 u+\frac{1}{2} a(6)^{2}$
(2) $12=6 u+18 a$
$3 \times$ (1) $36=6 u+6 a$
$-24=12 a \quad \Rightarrow a=-2$
$12=2 u+2(-2)$
$2 u=16$
$u=8 \quad a=-2$
ii) $A \in B, \quad v=0$

$$
\begin{aligned}
& s=? \\
& u=8 \quad v^{2}=u^{2}+2 a s \\
& v=0 \\
& a=-2 \\
& t a \\
& 0=8^{2}+2(-2) s \\
& 4 s=64 \\
& s=16
\end{aligned}
$$

So $A B=16-12=4 \mathrm{~m}$

3i)

ii)

$$
\begin{aligned}
4 g-8 a & =4 a \\
4 \times 9.8 & =12 a \\
a & =\frac{49}{15}=3.27 \mathrm{~ms}^{-2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
4 g-T & =0 \\
T & =4 \times 9.8 \\
& =39.2
\end{aligned}
$$

up showe

$$
\begin{gathered}
\Sigma F=m a \\
T-8 g \sin \theta=0
\end{gathered}
$$

$$
39.2-8 \times 9.8 \sin \theta=0
$$

$$
\sin \theta=\frac{39.2}{8 \times 9.8}=\frac{1}{2}
$$

$$
\theta=30^{\circ}
$$

4i) $\underline{\underline{K}}=\frac{d r}{d t} \quad \underline{r}=\binom{2 t}{6 t-4 t^{2}}$

$$
\begin{aligned}
& \underline{\underline{u}}=\binom{\frac{d(2 t)}{d t}}{\frac{d\left(6 t-4 t^{2}\right)}{d t}}=\binom{2}{6-8 t}=\binom{2}{6} \\
& \underline{u}=\binom{2}{6} \quad \underline{t} \begin{array}{l}
\text { wen } \\
t=0
\end{array} \\
& \hline \frac{d \underline{u}}{d t}=\binom{0}{-8}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \text { At } t=2 \quad \underline{v}=\binom{2}{6-8(2)}=\binom{2}{-10} \\
&|\underline{v}|=\sqrt{2^{2}+(-10)^{2}}=\sqrt{104}=10.2 \mathrm{~ms}^{-1}
\end{aligned}
$$

iii)

$$
\begin{array}{ll}
x=2 t & y=6 t-4 t^{2} \\
t=\frac{x}{2} & y=6\left(\frac{x}{2}\right)-4\left(\frac{x}{2}\right)^{2} \\
& y=3 x-x^{2} \text { as required. }
\end{array}
$$

5

	Horizonlal (x)	Vertical (y)
initial pos	0	0
a	0	-9.8
\underline{u}	15	8
\underline{v}	15	$8-9.8 t$
\underline{r}	$15 t$	$8 t-4.9 t^{2}$

Find highest point $\rightarrow v_{y}=0 \quad 8-9.8 t=0$

$$
t=\frac{8}{9.8}=\frac{40}{49}=0.816
$$

when $t=0.816$ then $r_{y}=8(0.816)-4.9(0.82)^{2}$

$$
=3.27 \mathrm{~m}
$$

So since the highest the store goes is 3.27 m it will not reach the height of the pigeon at 4 m .

When $r_{x}=22.5$

$$
\begin{aligned}
22.5 & =15 t \\
t & =\frac{\$ 5}{3} 1.5 \mathrm{sec}
\end{aligned}
$$

when $t=1.5$

$$
r_{y}=8(1.5)-4.9(1.5)^{2}=0.975
$$

The window w is between 0.8 m and 2 m and

$$
0.8<0.975<2 m
$$

So he hits his window.
Section B
Gi) $g=10 \mathrm{~ms}^{-2}$

$$
d=s(8.0)^{2}=320 \mathrm{~m}
$$

This is not consistent with records as $320>200>150$
Piran has used $s=u t+\frac{1}{2} a t^{2}$ with $s=d$

$$
\begin{array}{rlrl}
\text { So } & d=0 \times t+\frac{1}{2} \times 10 \times T^{2} & & u=0 \\
d & =S T^{2} & t=T
\end{array}
$$

ii) displacement is area under graph

$$
=\frac{5 \times 50}{2}+3 \times 50=275 \mathrm{~m}
$$

This is still not within 150 to 200 m so not con sistent.
iii) Both assume an initial constant acceleration of $10 \mathrm{~ms}^{-2}$
Model B is different as it tares $50 \mathrm{~ms}^{-2}$ to be the maximum velocity of the slove.after
iv)

Discaure travelled $0<\epsilon \leqslant 5$

$$
\begin{aligned}
=\int_{0}^{s} 10 t-t^{2} d t & =\left[s t^{2}-\frac{1}{3} t^{3}\right]_{s}^{0} \\
& =s(s)^{2}-\frac{1}{3}(s)^{3}=\frac{250}{3}=83.3 \mathrm{~m}
\end{aligned}
$$

Distance travelled $s \leqslant t \leqslant 8$

$$
=25 \times 3=75
$$

Total depth $=83.3+75=158.3 \mathrm{~m}$ which is Consistent with local records as $150<158.3<200$
v) Similar as they both assume a constant speed for $S \leqslant t \leq 8$
(or since $\frac{d v}{d t}=10-2 t$ at $t=0$ end $a=\frac{d v}{d t}=10$
they have initial acceleration of $\left(0 \mathrm{~ms}^{-2}\right)$
D. fferent as model C does not have constant acceleration in $0 \leqslant t \leqslant 5$

7 i)

$$
\cos \alpha=\frac{16}{20}=\frac{4}{5} \quad \cos \beta=\frac{9}{15}=\frac{3}{5}
$$

ii)

Resolve

$$
\xrightarrow{\text { horiz }} \quad E F=m a=1 \cos \alpha=m a
$$

$$
8000 \times \frac{3}{5}-6000 \times \frac{4}{5}=0 \quad \begin{gathered}
\text { hance } a=0 \text { in } \\
\text { horizontal }
\end{gathered}
$$

horizontal
direction

Vert

$$
\begin{aligned}
& \text { Vert } \quad \begin{array}{r}
\sin \alpha=\frac{3}{5} \quad \sin \beta=\frac{4}{5} \quad \frac{5}{4} \sin _{3}^{4} \quad 7500=m \times 9.8 \\
\uparrow \quad T \sin \alpha+8000 \sin \beta-7500
\end{array}=m a \quad \Rightarrow m=765.3 \\
& 6000 \times \frac{3}{5}+8000 \times \frac{4}{5}-7500=765.3 a \\
& a=\frac{2500}{765.3}=3.27 \mathrm{~ms}^{-2} \text { upwards }
\end{aligned}
$$

iii)

horizontal component Kept in equilibrium so

$$
8000 \cos \beta-T \cos \alpha=0
$$

$$
T=\frac{8000 \cos \beta}{\cos \alpha} \text { as required }
$$

So $T=\frac{8000\left(\frac{9}{\sqrt{d^{2}+9^{2}}}\right) \times \sqrt[2]{d^{2}+16^{2}}}{\frac{16}{\sqrt{d^{2}+16^{2}}} \times \frac{8000 \times 9 \sqrt{d^{2}+16^{2}}}{16 \sqrt{d^{2}+9^{2}}}}$

$$
=\frac{4500 \sqrt{d^{2}+256}}{\sqrt{d^{2}+81}}
$$

iv) When $d=6.75 \quad T=\frac{4500 \sqrt{6.75^{2}+256}}{\sqrt{6.75^{2}+81}}=6946.2$

Resolve vertically

$$
\begin{aligned}
& \uparrow \quad T \sin \alpha+8000 \sin \beta-7500=m a \\
& \sin \alpha=\frac{6.75}{\sqrt{6.75^{2}+16^{2}}} \quad \sin \beta=\frac{6.75}{\sqrt{6.75^{2}+9^{2}}} \quad m=\frac{7500}{9.8}
\end{aligned}
$$

$$
\begin{aligned}
a & =\frac{T \sin \alpha+8000 \sin \beta-7500}{m} \\
& =\frac{\frac{4500 \sqrt{6.75^{2}+256}}{\sqrt{6.75^{2}+81}} \times \frac{6.75}{\sqrt{6.75^{2}+16^{2}}}+8000 \times \frac{6.75}{\sqrt{6.75^{2}+9^{2}}}-700}{\frac{7500}{9.8}} \\
& =\frac{2700+4800-7500}{\frac{7500}{9.8}}=\begin{array}{l}
=\begin{array}{l}
\text { acceleration } \\
\text { ven } d=6.75
\end{array}
\end{array}
\end{aligned}
$$

v) At P the bomb would theoretically have the following force diagram:

It could not be in equilibrium as there are to no vertical forces to combleract gravity dunce (the weight) 1

If the bomb was at P and The tensions equil it would have vertical acceleration downwards. (which would equal $g=9.8 \mathrm{~ms}^{-2}$)

