M1 JUNE 2010 WORKED SOLUTIONS

Q1 This is a 'uvast ' (suvat) problem with $u \quad v \quad a \quad s \quad t$

$$
\begin{array}{lllll}
0 & ? & -9.8 & -0.75 & ?
\end{array}
$$

Make a diagram to be sure of signs. Note we do not have v or t and need to find v so we use $v^{2}-u^{2}=2 a s$
$s=-0.7534 \mathrm{~m}^{\frac{1}{2}} \mathrm{~g}$

$$
v^{2}=2 a s \text { as } u=0 \quad v= \pm \sqrt{2 a s}= \pm \sqrt{2 \times(-9.8) \times(-0.75)}=
$$

As we are asked for speed (only magnitude) $v=3.834 \mathrm{~m} / \mathrm{s}$

Q2 We are given the weight, i.e. $m g=250 \mathrm{~N}$, also as we have equilibrium that means that $\sum F=0$. Remember a pulley changes direction of force but not magnitude, so the tension in string between the pulley and the wall is same as $m g=250 \mathrm{~N}$. At B we need to resolve forces, make a diagram it will help.

i) Eq. of Motion // $\operatorname{Tsin} 70=F_{x} \quad F_{x}=235 N$

Eq. of Motion $\quad T \cos 70=F_{y} \quad F_{y}=85.3 N$
ii) In the new set up, the overall tension us the same but it now shared between the two part of the rope.

So tension is

$$
T=\frac{250}{2}=125 \mathrm{~N}
$$

Q3 We call the 3 forces $\overrightarrow{F_{1}}=\left(\begin{array}{c}-1 \\ 14 \\ -8\end{array}\right), \overrightarrow{F_{2}}=\left(\begin{array}{c}3 \\ -9 \\ 10\end{array}\right)$ and $\vec{F}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and the acc. $\vec{a}=\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right)$
The eq. of motion (Newton $2^{\text {nd }}$ Law) in vector form gives $\sum \vec{F}=m \vec{a}$
So that $\left(\begin{array}{c}-1 \\ 14 \\ -8\end{array}\right)+\left(\begin{array}{c}3 \\ -9 \\ 10\end{array}\right)+\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=4\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right) \quad$ and $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=4\left(\begin{array}{c}-4 \\ 8 \\ 16\end{array}\right)-\left(\begin{array}{c}-1 \\ 14 \\ -8\end{array}\right)-\left(\begin{array}{c}3 \\ -9 \\ 10\end{array}\right)$
Hence $\vec{F}=\left(\begin{array}{c}-4+1-3 \\ 8-14+9 \\ 16+8-10\end{array}\right) \rightarrow \vec{F}=\left(\begin{array}{c}-6 \\ 3 \\ 14\end{array}\right)$ Note required in vector form (could be i, j, k)

M1 JUNE 2010 WORKED SOLUTIONS

ii) We need to use "uvast " with vectors.

Use
$=$

Speed $=$
\qquad
\qquad

Q4 Note 'At one stage the boxes are slowing in their descent ' corresponds to 'The acceleration of the boxes is a upwards' as acc. in opposite direction to motion gives slowing down. Diagram does help, that's why they ask for it!!

We want so eliminate a from sim. Eqs. Easiest is to divide both by masses and then equate them

Now put numbers

Simplify and rearrange
Note no need for g , cancels out \square

M1 JUNE 2010 WORKED SOLUTIONS

Q5 i) If the basis vectors $\vec{\imath}, \vec{\jmath}$ are in the east $\&$ north direction, then the angle θ of the vector $-4 \vec{\imath}-6 \vec{\jmath}$ is w.r.t. the east anti clockwise, so for the bearing we need θ, as we go from north full circle, then $1 / 4$ turn more to go on to east axis and then back θ.

As $\theta=\tan ^{-1} \frac{-6}{-4}$ we get $\theta=56.31$ from calculator but diagram show we need $2^{\text {nd }}$ solution answer +180 hence $\theta=236.31$ The bearing is therefore $360-236.31+90=213.7$
ii) Remember that two vectors are in same direction, i.e. parallel, if the ratio of components is constant.

So with $\overrightarrow{v_{1}}=(-4+3 k) \vec{\imath}+(-6-2 k) \vec{\jmath}$ rearranging given vector and $\overrightarrow{v_{2}}=7 \vec{\imath}+(-9) \vec{\jmath}$
Be careful with signs!

$$
\begin{aligned}
& \frac{-4+3 k}{7}=\frac{-6-2 k}{-9} \text { hence } 36-27 k=-42-14 k \\
& 78=13 k \rightarrow k=6
\end{aligned}
$$

Q6 Easiest in this case to put origin at 0 , not at sea level as we need to find height above 0 .

Remember
$y=y_{0}+v_{y} t-\frac{1}{2} g t^{2}$ and as $y_{0}=0, v_{y}=8 \mathrm{~m} / \mathrm{s}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$y=8 t-4.9 t^{2}$
And

$$
x=x_{0}+v_{x} t \quad \text { with } x_{0}=0, v_{x}=12
$$

$$
x=12 t
$$

When the ball hits the sea level, we have $y=-3.6 m$ so we need to solve

$$
\begin{gathered}
-3.6=8 t-4.9 t^{2} \\
4.9 t^{2}-8 t-3.6=0
\end{gathered}
$$

solve using quadratic formula gives $t=2$ or $t=-0.372$. Clearly need to keep positive value $t=2$ and put this into formula for x we found above, $x=12 t$,

$$
\text { gives distance from } A=x=12 \times 2=24 \mathrm{~m}
$$

M1 JUNE 2010 WORKED SOLUTIONS

Q7 Note that the graph of the displacement is a curve, hence v is not constant, and we may need calculus.
i) A) When $t=0 \quad y=12$, then max is at $t=1$ when $y=16$,
so the greatest displacement above is $16-12=\underline{4 \mathrm{~m}}$
B) Distance is a scalar, means greatest either above or below point $t=0$, From diagram we see that a the minimum $(t=3.5, y=-4)$ the displacement is largest and neg. \quad So the greatest distance is $\quad(-4)-12=-16 \mathrm{~m}$
C) P is moving down, implies v is negative. So we need slope, $\frac{d y}{d t}<0$, which we see can from diagram is the case between $t=1 \& t=3.5$ i.e. we need $1<t<3.5$ D) P is at rest when $v=\frac{d y}{d t}=0$, i.e. at turning points $\quad t=1 \& t=3.5$
ii) We are given that between $t=0 \& t=3 y=-4 t^{2}+8 t+12$, therefore

$$
\begin{gathered}
v=\frac{d y}{d t}=\frac{d\left(-4 t^{2}+8 t+12\right)}{d t} \quad v=(-8 t+8) \mathrm{m} / \mathrm{s} \\
a=\frac{d v}{d t}=-8 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

And
iii) Note if the speed is $4 \mathrm{~m} / \mathrm{s}$ then the velocity can be $+4 \mathrm{~m} / \mathrm{s}$ or $-4 \mathrm{~m} / \mathrm{s}$, need to consider both cases.
When $v=+4$

$$
\text { And } v=-4
$$

$$
\begin{aligned}
4=-8 t+8 & \rightarrow t=\frac{1}{2} \\
-4=-8 t+8 & \rightarrow t=\frac{3}{2}
\end{aligned}
$$

This corresponds to the diagram, note the symmetry of $\mathrm{t}=0.5$ and $\mathrm{t}=1.5$.
iv) More difficult part, but you should notice that as you are given the acceleration and need to find the displacement, you are doing the reverse of part iii) and will need to integrate the acc. twice. Also note acc. is constant hence displacement will be a quadratic.
Call acceleration and velocity in this part a_{2} and v_{2}
We know that $a_{2}=\frac{d v_{2}}{d t}=32$ so we can integrate a_{2} to get $v_{2}=\int 32 d t=32 t+C$
Now it becomes clear why the questions says 'There is no sudden change in velocity when t $=3$. ${ }^{\prime}$ This allows us to find C .
Using from part ii) $v=(-8 t+8) \mathrm{m} / \mathrm{s}$ we get at $v=-16$ at $t=3$.
So $v_{2}=-16 \mathrm{~m} / \mathrm{s}$ also at $t=3$ which we put into $v_{2}=32 t+C$ to get

$$
-16=32 \times 3+C \rightarrow C=-112 \text { so } v_{2}=32 t-112
$$

To find y we need to integrate as $y=\int v_{2} d t$
$y=\int(32 t-112) d t=32 \frac{t^{2}}{2}-112 t+C=16 t^{2}-112 t+C$ To find C we us value at $\mathrm{t}=3 \mathrm{y}=0$ from graph: $0=16 \times 3^{2}-112 \times 3+C \rightarrow C=192$

So finally we get to $y=16 t^{2}-112 t+192$

M1 JUNE 2010 WORKED SOLUTIONS

Q7
i) If friction is ignored only $F=150 \mathrm{~N}$ acting and using Newton's $2^{\text {nd }}$ Law

$$
F=m a \quad \rightarrow a=\frac{F}{m} \quad \text { gives } \quad a=\frac{150}{250}=\frac{3}{5} \quad a=0.6 \mathrm{~m} / \mathrm{s}^{2}
$$

ii) If friction, F_{R}, is included then two forces acting and use $\sum F=m a$ and as no motion $a=0$

Hence $F+F_{R}=0 \rightarrow F_{R}=-F=-150 N$
iii) Make a diagram. Note there is no motion in vertical direction so $a_{\perp}=0$

The resultant force will on be in horizontal direction

$$
F_{\text {res }}=300 \cos 40+450 \cos 25.37+150 \rightarrow F_{\text {res }}=786.4 \mathrm{~N}
$$

iv)

If friction, F_{R}, is included then new eq. of motion is $F_{\text {res }}-F_{R}=m a$

$$
\text { Hence } F_{R}=F_{\text {res }}-m a=786.4-250 a \quad \text { call it (A) }
$$

We still need to find a, so 'uvast ' (suvat) with $u=0 \quad v=? \quad a=? \quad s=1 \quad t=2$
So we use

$$
s=u t+\frac{1}{2} a t^{2} \quad(u=0) \quad a=\frac{2 s}{t^{2}}=\frac{2 \times 1}{4}=\frac{1}{2}
$$

Back into (A) gives $F_{R}=786.4-250 \times \frac{1}{2}=661.4$ So to 3s.f. $F_{R}=661 \mathrm{~N}$
v) $\quad F_{R}=661+200=861 N$ then equation of motion $F_{\text {res }}-F_{R}=m a$ becomes

$$
786.4-861.4=250 a \quad \rightarrow a=\frac{-3}{10} m / s^{2}
$$

Again we use 'uvast ' (suvat) with $u=18.5 \quad v=$? $\quad a=-0.3 \quad s=1.65 \quad t=$?
So we use $v^{2}-u^{2}=2 a s$ giving $v=\sqrt{u^{2}+2 a s}=\sqrt{18.5^{2}+2 \times(-0.3) \times 1.65}$

$$
v=1.5 \mathrm{~m} / \mathrm{s}
$$

M1 JUNE 2010 WORKED SOLUTIONS

There were more candidates this series who seemed unable to engage properly with several questions; sometimes it was lack of familiarity with the technical language of the topics (eg see the comments on Q3(ii) below).

The work of many candidates would benefit from the use of clear, accurate diagrams not only when considering forces but also when attempting kinematics problems. Q1 is a good example of the need for clear diagrams even when dealing with apparently simple problems in kinematics. Such diagrams should include the direction taken to be positive; if this is done in Q1, then when substitution is made into $v^{2}=u^{2}+2 a s$, it is much easier to see that a and s are either both positive or are both negative.

