Cl summer 2015
SECTION A

$$
\begin{aligned}
\frac{(2 x+15 x(x+1)-(2 x+1) 3(x+1)}{2 x+1} & =1(2 x+1)(x+1) \\
5 x^{2}+5 x-6 x-3 & =2 x^{2}+3 x+1 \\
3 x^{2}-4 x-4 & =0 \\
3 x^{2}-6 x+2 x-4 & =0 \\
3 x(x-2)+2(x-2) & =0 \\
(3 x+2)(x-2) & =0 \\
x=-\frac{2}{3}, x=2 &
\end{aligned}
$$

2

$$
\begin{array}{cr}
& 6 \cos 2 \theta+\sin \theta \\
= & 6\left(1-2 \sin ^{2} \theta\right)+\sin \theta \\
= & \cos 2 \theta \\
= & \equiv \cos ^{2} \theta-\sin ^{2} \theta \\
12 \sin ^{2} \theta+\sin \theta & \\
12 s^{2}-s-6=0 & \text { let } \sin \theta=s \\
12 s^{2}+8 s-9 s-6=0 & \arcsin \left(\frac{3}{4}\right)=48.59 \ldots \\
4 s(3 s+2)-3(3 s+2)=0 & \arcsin \left(\frac{2}{3}\right)=41.81 \ldots \\
(4 s-3)(3 s+2)=0 & \\
s=\frac{3}{4}, s=-\frac{2}{3} & \theta=48.6^{\circ}, 180^{\circ}-48.6^{\circ}, \\
& 180^{\circ}+41.8^{\circ}, 360^{\circ}-41.8^{\circ} \quad(3 s . f) \\
\theta=48.6^{\circ}, 131^{\circ}, 222^{\circ}, 318^{\circ}(3 \text { s.f.) }
\end{array}
$$

3 (i)

$$
\begin{aligned}
\frac{1}{\sqrt[3]{1-2 x}} & =(1-2 x)^{-1 / 3} \quad n=-\frac{1}{3}, \text { use }(-2 x) \\
& \approx 1+(-1 / 3)(-2 x)+\frac{(-1 / 3)(-4 / 3)(-2 x)^{2}}{2}+\ldots \\
& =1+\frac{2}{3} x+\frac{8}{9} x^{2}+\ldots
\end{aligned}
$$

valid for $|-2 x|<1 \Rightarrow|x|<\frac{1}{2}$
(ii)

$$
\begin{aligned}
\frac{1-3 x}{\sqrt[3]{1-2 x}} & \approx(1-3 x)\left(1+\frac{2}{3} x+\frac{8}{9} x^{2}+\ldots\right) \\
& =1+\frac{2}{3} x+\frac{8}{9} x^{2}-3 x-2 x^{2}-x^{3} \text { term ... } \\
& =1-\frac{7}{3} x-\frac{10}{9} x+\ldots \quad \text { valid for }|x|<\frac{1}{3} \\
& a=-\frac{7}{3}, b=-\frac{10}{9}
\end{aligned}
$$

4 (i)

$$
\begin{aligned}
f(x)=\cos x+\lambda \sin x & =R \cos (x-\alpha) \\
& =R \cos x \cos \alpha+R \sin x \sin \alpha
\end{aligned}
$$

equate coff:s $\cos x: 1=R \cos \alpha$

$$
\sin x: \quad \lambda=R \sin \alpha
$$

$$
\frac{R \sin \alpha}{\gamma \cos \alpha}=\frac{\lambda}{1}, \quad \tan \alpha=\lambda
$$

$$
R=\sqrt{1+\lambda^{2}}
$$

$$
\alpha=\arctan \lambda
$$

$$
\therefore f(x)=\sqrt{1+\lambda^{2}}(\cos (x-\arctan \lambda))
$$

$$
\begin{aligned}
R=2 \quad \sqrt{1+\lambda^{2}} & =2 \\
1+\lambda^{2} & =4 \\
\lambda^{2} & =3 \\
\lambda & =\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\arctan \sqrt{3} \\
& \alpha=\frac{\pi}{3}
\end{aligned}
$$

$5(i) \quad x=\sec \theta, \quad y=2 \tan \theta$

$$
\begin{aligned}
& \frac{d x}{d \theta}=\sec \theta \tan \theta \quad, \frac{d y}{d \theta}=2 \sec ^{2} \theta \\
& \begin{array}{rl|l}
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{d x / d \theta} & =\frac{2 \sec \theta}{\sec \theta} \tan \theta & \sin g \sec \theta=\frac{1}{\cos \theta} \\
& =\frac{2 \cos \theta}{\cos \theta} \theta=\frac{\sin \theta}{\cos \theta} \\
& =2 \operatorname{cosec} \theta \quad \text { Q.E.D. } & \operatorname{cosec} \theta=\frac{1}{\sin \theta}
\end{array}
\end{aligned}
$$

(ii)

$$
\begin{array}{rl|r}
-y^{2} & =4 \tan ^{2} \theta & \cos ^{2} \theta+\sin ^{2} \theta \equiv 1 \\
& =4\left(\sec ^{2} \theta-1\right) & 1+\tan ^{2} \theta \equiv \sec ^{2} \theta \\
& =4 x^{2}-4 \quad \text { QED } & \tan ^{2} \theta \equiv \sec ^{2} \theta-1 \\
\hline
\end{array}
$$

(iii)

$$
\begin{aligned}
\text { volume } & =\pi \int_{1}^{2} 4 x^{2}-4 d x \\
& =\pi\left[\frac{4}{3} x^{3}-4 x\right]_{1}^{2} \\
& =\pi\left(\left(\frac{4}{3}(2)^{3}-4(2)\right)-\left(\frac{4}{3}-4\right)\right) \\
& =\pi\left(\frac{32}{3}-\frac{24}{3}-\left(\frac{4}{3}-\frac{12}{3}\right)\right) \\
& =\frac{16}{3} \pi
\end{aligned}
$$

NoTE:

$$
\text { rotated } 180^{\circ} \text { is same as }
$$

b(iii) LEFB
\qquad

$$
=\frac{\sqrt{46}}{3}
$$

$$
\overrightarrow{B F} \left\lvert\,=\sqrt{1^{2}+\left(\frac{1}{6}\right)^{2}+2^{2}}\right.
$$

$$
=\frac{\sqrt{181}}{6}
$$

$$
\left.\begin{array}{rl}
\overrightarrow{E F}=\left(\begin{array}{c}
2-0 \\
a--2 \\
2-3
\end{array}\right) & \overrightarrow{B F}
\end{array}\right)=\left(\begin{array}{c}
2-3 \\
a--2.5 \\
2-0
\end{array}\right)
$$

$$
\text { Let } 6 E F B=\theta, \quad \cos \theta=\frac{\overrightarrow{E F} \cdot \overrightarrow{B F}}{|\overrightarrow{E F}||\overrightarrow{B F}|}
$$

(iv) Position vector of p is given by

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O F}+\frac{1}{2} \overrightarrow{F E} \quad \text { using } \overrightarrow{F E}=-\overrightarrow{E F} \text { (found colic) } \\
& =\left(\begin{array}{c}
2 \\
-7 / 3 \\
2
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
-2 \\
\frac{1}{3} \\
1
\end{array}\right)
\end{aligned}
$$

z-lord of p is 2.5 (z-lord is height above ground) Position vector of $\overrightarrow{O Q}$ is given by

$$
\overrightarrow{O Q}=\overrightarrow{O P}+\frac{1}{3} \overrightarrow{P H}
$$

z cord of $q=2.5+\frac{1}{3}(3-2.5)$

$$
=\frac{8}{3}
$$

$\therefore Q$ is $2^{2 / 3}$ metres above the ground.

