solutions

1 The diagram is a copy of Fig. 4.

R is a place with latitude 45° north and longitude 60° west. Show the position of R on the diagram.

M is the sub-solar point. It is on the Greenwich meridian and the declination of the sun is +20°. Show the position of M on the diagram. [2]

2 Use Fig. 8 to estimate the difference in the length of daylight between places with latitudes of 30° south and 60° south on the day for which the graph applies. [3]

3 The graph is a copy of Fig. 6.

The article says that it shows the terminator in the cases where the sun has declination 10° north, 1° north, 5° south and 15° south.

Identify which curve (A, B, C or D) relates to which declination.

[2]

Fig. 6

3	10° north:	B		using y-intercept	at a	ctan (-(tano)) [cosc)=1]
April C	1° north:	A		which is -80		3 etc. y-int where:)c=0
(4)	5° south:	D .	L ú.	e in the second			
	15° south:	C		2.4			
			,		÷		

4 In lines 94 and 95 the article says

"Fig. 8 shows you that at latitude 60° north the terminator passes approximately through time +9 hours and -9 hours so that there are about 18 hours of daylight."

Use Equation (4) to check the accuracy of the figure of 18 hours.

[4]

4	tany = -tand cos(15t) given $a = 23.44°$
	$tan 60^{\circ} = -1$ $cos(15t)$ $y = 60^{\circ}$
	tan 23 44 solve for t
- 1	- J3 tan 23.44° = cos(15t) show full,
	larccos (-Jztan 2344)= t clear working
	15
	t=9.24 (3s.f.)
	by symmetry, no of daylight hows is 2t
	:. 2(9.24) = 18.5 (3s.f.) hours of daylight.
	Close to 18 hours (value given), but with about 3% error.
pr (124	Alternatively, using $t=9$, we get $y = \arctan(-\frac{1}{\tan 2344}\cos(15(9)))$
	$=58.5^{\circ}$ (3s.f.)
	This is close to 60°, but again approx 3°6 error.

5 (i) Use Equation (3) to calculate the declination of the sun on February 2nd.

[3]

(ii) The town of Boston, in Lincolnshire, has latitude 53° north and longitude 0°.

Calculate the time of sunset in Boston on February 2nd.

Give your answer in hours and minutes using the 24-hour clock.

[4]

5 (i)	$x = -23.44 \cos(\frac{360}{765}(n+10))$ Jan 1st is day 1
S Y	=> Feb 2 rd
S. aus	$=-23.44 \cos\left(\frac{360}{365}(43)\right)$ Swart
8	= - 17.3° (3s.f.) (stored in A
	on calc)
	NOTE: I mark lost if you didn't
	know there are 31 days in
g	January!
5 (ii)	For sunset, we use the terminator (equation 4)
- 102 -	$y=53^{\circ}$, $\alpha = -17.3^{\circ}$ (from (i)), solve for t $tan 53^{\circ} = -\frac{1}{tan 17.3^{\circ}} cos(15t)$ using Exact value for a
Secretary and the	t = 1 arccos (- tan 53 tan (-17.3)) from calculator
	Tshow full expression for t (to gain a method mark)
	= 4.3717 0.3717 ×60 = 22.3
	interpret in conteset) 4 hrs 22 mins
	sunset is 4 hrs 22 mins after noon, so Tknow how to
	(nr 4:22 am) convert hours (decimal)
	into hours and minutes!