Paper collated from year	2015
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

1. Simplify

(a)
$$(2\sqrt{5})^2$$
 (1)

(b)
$$\frac{\sqrt{2}}{2\sqrt{5-3}\sqrt{2}}$$
 giving your answer in the form $a+\sqrt{b}$, where a and b are integers. (4)

2. Solve the simultaneous equations

$$y - 2x - 4 = 0$$

$$4x^2 + y^2 + 20x = 0$$
(7)

3. Given that $y = 4x^3 - \frac{5}{x^2}$, $x \ne 0$, find in their simplest form

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

(b)
$$\int y \, \mathrm{d}x$$

4.

The equation

$$(p-1)x^2 + 4x + (p-5) = 0$$
, where p is a constant

has no real roots.

(a) Show that
$$p$$
 satisfies $p^2 - 6p + 1 > 0$ (3)

(b) Hence find the set of possible values of p. (4)

5. The curve *C* has equation

$$y = \frac{(x^2 + 4)(x - 3)}{2x}, \quad x \neq 0$$

- (a) Find $\frac{dy}{dx}$ in its simplest form. (5)
- (b) Find an equation of the tangent to C at the point where x=-1Give your answer in the form ax+by+c=0, where a, b and c are integers. (5)
- Given that $y = 2^x$,

6.

- (a) express 4^x in terms of y. (1)
- (b) Hence, or otherwise, solve

$$8(4^x) - 9(2^x) + 1 = 0 (4)$$

- 7. (a) Factorise completely $9x 4x^3$ (3)
 - (b) Sketch the curve C with equation

$$y = 9x - 4x^3$$

Show on your sketch the coordinates at which the curve meets the x-axis. (3)

The points A and B lie on C and have x coordinates of -2 and 1 respectively.

(c) Show that the length of AB is $k\sqrt{10}$ where k is a constant to be found. (4)

8. A curve with equation y = f(x) passes through the point (4, 9).

Given that

$$f'(x) = \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2, \quad x > 0$$

(a) find f(x), giving each term in its simplest form.

(5)

Point P lies on the curve.

The normal to the curve at P is parallel to the line 2y + x = 0

(b) Find the x coordinate of P.

(5)

q Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(2-\frac{x}{4}\right)^{10}$$

giving each term in its simplest form.

(4)

- 10. A circle C with centre at the point (2, -1) passes through the point A at (4, -5).
 - (a) Find an equation for the circle C.

(3)

(b) Find an equation of the tangent to the circle C at the point A, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

11. (i) Use logarithms to solve the equation $8^{2x+1} = 24$, giving your answer to 3 decimal places.

(3)

(ii) Find the values of y such that

$$\log_2(11y-3) - \log_2 3 - 2\log_2 y = 1, \qquad y > \frac{3}{11}$$
 (6)

12. Given that

$$4\sin^2 x + \cos x = 4 - k, \qquad 0 \leqslant k \leqslant 3$$

(a) find $\cos x$ in terms of k.

(3)

(b) When k = 3, find the values of x in the range $0 \le x < 360^{\circ}$

(3)

13. A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of 75 π cm³.

The cost of polishing the surface area of this glass cylinder is £2 per cm² for the curved surface area and £3 per cm² for the circular top and base areas.

Given that the radius of the cylinder is r cm,

(a) show that the cost of the polishing, £C, is given by

$$C = 6\pi r^2 + \frac{300\pi}{r} \tag{4}$$

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.

(5)

(c) Justify that the answer that you have obtained in part (b) is a minimum.

(1)

14. Differentiate
$$f(x) = 8x^3 + 5$$
 from first principles. (4)

Mark scheme

1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1
			(1)
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	M1
	(Allow to multiply to	op and bottom by $k(2\sqrt{5}+3\sqrt{2})$	
		Obtains a denominator of 2 or sight of	
		$(2\sqrt{5}-3\sqrt{2})(2\sqrt{5}+3\sqrt{2})=2$ with no errors	
	$=\frac{\cdots}{2}$	seen in this expansion.	A1
		May be implied by ${2k}$	
	Note that M0A1 is not possible	. The 2 must come from a correct method.	
		re is no need to consider the numerator.	
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{2}} \times$	$\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}+3\sqrt{2}} = \frac{\dots}{2} \text{ scores M1A1}$	
		An attempt to multiply the numerator by	
		$\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the	
	Numerator =	form $p+q\sqrt{10}$ where p and q are integers.	M1
	$\sqrt{2}(2\sqrt{5}\pm3\sqrt{2}) = 2\sqrt{10}\pm6$		
		This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.	
	(Allow attempt to multi	ply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{2\sqrt{10} + 6}{2} = 3 + \sqrt{10}$	Cso. For the answer as written or $\sqrt{10} + 3$ or a statement that $a = 3$ and $b = 10$. Score when first seen and ignore any subsequent attempt to 'simplify'.	A1
		Allow $1\sqrt{10}$ for $\sqrt{10}$	
			(4)
			(5 marks)

$y = 2x + 4 \Rightarrow 4x^{2} + (2x + 4)^{2} + 20x = 0$ or $2x = y - 4 \text{ or } x = \frac{y - 4}{2}$ $\Rightarrow (y - 4)^{2} + y^{2} + 10(y - 4) = 0$	Attempts to rearrange the linear equation to $y =$ or $x =$ or $2x =$ and attempts to fully substitute into the second equation.	M1
$8x^{2} + 36x + 16 = 0$ or $2y^{2} + 2y - 24 = 0$	M1: Collects terms together to produce quadratic expression = 0. The '= 0' may be implied by later work. A1: Correct three term quadratic equation in x or y. The '= 0' may be implied by later work.	M1 A1
$(4)(2x+1)(x+4) = 0 \Rightarrow x = \dots$ or $(2)(y+4)(y-3) = 0 \Rightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic.	M1
x = -0.5, x = -4 or y = -4, y = 3	Correct answers for either both values of x or both values of y (possibly un-simplified)	A1 cso
Sub into $y = 2x + 4$ or Sub into $x = \frac{y - 4}{2}$	Substitutes at least one of their values of x into a correct equation as far as $y =$ or substitutes at least one of their values of y into a correct equation as far as $y =$	M1
y = 3, y = -4 and x = -4, x = -0.5	Fully correct solutions and simplified. Pairing not required. If there are any extra values of <i>x</i> or <i>y</i> , score A0.	A1
		(7 marks)

Special Case: Uses $y = -2x - 4$		
$y = 2x + 4 \Rightarrow 4x^2 + (-2x - 4)^2 + 20x = 0$		M1
$8x^2 + 36x + 16 = 0$		M1A1
$(4)(2x+1)(x+4) = 0 \Rightarrow x = \dots$		M1
x = -0.5, x = -4		A0
Sub into $y = 2x + 4$	Sub into $y = -2x - 4$ is M0	M1
$y = 3, \ y = -4$		
and		A0
x = -4, $x = -0.5$		

3.	$y = 4x^{3} - \frac{5}{x^{2}}$ M1: $x^{n} \rightarrow x^{n-1}$ e.g. Sight of x^{2} or x^{-3} or $\frac{1}{x^{3}}$			
3. (a)	$12x^2 + \frac{10}{x^3}$	e.g. Sight of x^2 or x^{-3} or $\frac{1}{x^3}$ A1: $3 \times 4x^2$ or $-5 \times -2x^{-3}$ (oe) (Ignore + c for this mark) A1: $12x^2 + \frac{10}{x^3}$ or $12x^2 + 10x^{-3}$ all on one line and no + c	M1A1A1	
	Apply ISW here and award marks when first seen.			
			(3)	
(b)	$x^{4} + \frac{5}{x} + c$ or $x^{4} + 5x^{-1} + c$ Apply ISW here and aw	M1: $x^n \to x^{n+1}$. e.g. Sight of x^4 or x^{-1} or $\frac{1}{x^1}$ Do <u>not</u> award for integrating their answer to part (a) A1: $4\frac{x^4}{4}$ or $-5 \times \frac{x^{-1}}{-1}$ A1: For fully correct and simplified answer with $+ c$ all on one line. Allow $x^4 + 5 \times \frac{1}{x} + c$ Allow $1x^4$ for x^4	M1A1A1	
	Apply 15 w nere and aw	ard marks when first seen. Ignore spurious integral signs for all marks.		
		signs for an marks.		
			(3)	
			(6 marks)	

4.

$b^{2}-4ac < 0 \Rightarrow \text{e.g.}$ $4^{2}-4(p-1)(p-5) < 0 \text{ or}$ $0 > 4^{2}-4(p-1)(p-5) \text{ or}$ $4^{2} < 4(p-1)(p-5) \text{ or}$ $4(p-1)(p-5) > 4^{2}$	M1: Attempts to use $b^2 - 4ac$ with at least two of a , b or c correct. May be in the quadratic formula. Could also be, for example, comparing or equating b^2 and $4ac$. Must be considering the given quadratic equation. Inequality sign not needed for this M1. There must be no x terms. A1: For a correct un-simplified inequality that is not the given answer	M1A1
$4 < p^2 - 6p + 5$		
$p^2 - 6p + 1 > 0$	Correct solution with no errors that includes an expansion of $(p-1)(p-5)$	A1*
		(3)

(b)	$p^{2}-6p+1=0 \Rightarrow p=$ $p=3\pm\sqrt{8}$ $p=3\pm\sqrt{8}$ $p=3\pm\sqrt{32}$ $p=\frac{6\pm\sqrt{32}}{2}$ (Maximus in part of the square product of the square pro		their q	attempt to solve $p^2 - 6p + 1 = 0$ (not quadratic) leading to 2 solutions for p allow attempts to factorise – must be the quadratic formula or completing tare)	M1
			(May	y be implied by their inequalities) be a single number not e.g. 36 - 4	A1
	Allow the M1A	1 to score a	nywher	e for solving the given quadratic	
	$p < 3 - \sqrt{8}$ or	<i>Y</i> • • • • • • • • • • • • • • • • • • •		M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3 - \sqrt{8}$, $p > 3 + \sqrt{8}$ or equivalent e.g. $p < \frac{6 - \sqrt{32}}{2}$, $p > \frac{6 + \sqrt{32}}{2}$ $(-\infty, 3 - \sqrt{8}) \cup (3 + \sqrt{8}, \infty)$ Allow ",", "or" or a space between the answers but do not allow $p < 3 - \sqrt{8}$ and $p > 3 + \sqrt{8}$ (this scores M1A0) Apply ISW if necessary.	M1A1
	A correct solution to	the quadr	atic foll	owed by $p > 3 \pm \sqrt{8}$ scores M1A1M0A	10
		$3+\sqrt{8}$ <	p < 3-	√8 scores M1A0	
A	Allow candidates to u	se x rather	than p l	but must be in terms of p for the final	A1
					(4)
					(7 marks)

5	la	١
3	ιa	1

5(a)			
$(x^2 +$	$-4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
x^3-3x	$\frac{x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by $2x$. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	ddM1A1
			(5)

(b)	At $x = -1$, $y = 10$	Correct value for y	B1
	$\left(\frac{dy}{dx}\right) = -1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	M1A1
	y-'10'='3.5'(x1)	Uses their tangent gradient which must come from calculus with $x = -1$ and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c .	M1
	2y-7x-27=0	$\pm k \left(2y - 7x - 27\right) = 0 \operatorname{cso}$	A1
			(5)
			(10 marks)

	, , , ,	Allow y^2 or $y \times y$ or "y squared"	
6 (a)	$\left(4^{x}=\right)y^{2}$		B1
	Must be seen i	"4" = "not required	
	With the seem i	n part (a)	(1)
(b)	$8y^{2} - 9y + 1 = (8y - 1)(y - 1) = 0 \Rightarrow y = \dots$ or $(8(2^{x}) - 1)((2^{x}) - 1) = 0 \Rightarrow 2^{x} = \dots$	For attempting to solve the given equation as a 3 term quadratic in y or as a 3 term quadratic in 2^x leading to a value of y or 2^x (Apply usual rules for solving the quadratic – see general guidance) Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8x^2 - 9x + 1 = 0$	M1
	$2^{x}(\text{or }y) = \frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^x or y or their letter but $\frac{\text{not } x}{\text{later}}$ unless 2^x (or y) is implied later	A1
	x = -3 $x = 0$	M1: A correct attempt to find one numerical value of x from their 2^x (or y) which must have come from a 3 term quadratic equation . If logs are used then they must be evaluated. A1: Both $x = -3$ and/or $x = 0$ May be implied by e.g. $2^{-3} = \frac{1}{8} \text{ and } 2^0 = 1 \text{ and no}$ extra values.	M1A1
			(4)
			(5 marks)

7	$9x-4x^3 = x(9-4x^2)$ or $-x(4x^2-9)$	9)	Takes out a common factor of x or $-x$ correctly.	B1	
	$9-4x^2 = (3+2x)(3-2x)$ or		$9-4x^2 = (\pm 3 \pm 2x)(\pm 3 \pm 2x)$ or	M1	
	$4x^2 - 9 = (2x - 3)(2x + 3)$		$4x^2 - 9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$	IVI I	
	$9x - 4x^3 = x(3 + 2x)(3 - 2x)$		but allow equivalents e.g. $-2x$) $(-3+2x)$ or $-x(2x+3)(2x-3)$	A1	
Note: 42	$x^3 - 9x = x(4x^2 - 9) = x(2x - 3)(2x + 3)$	3) so 9	$9x-4x^3 = x(3-2x)(2x+3)$ would scor	e full ma	rks
	Note: Correct work leading to 9	9x(1-	$(\frac{2}{3}x)(1+\frac{2}{3}x)$ would score full marks		
	Allow $(x \pm 0)$ or ($-x \pm 0$) instead of x and -x		
					(3)
(b)	y ↑		A cubic shape with one maximum and one minimum	M1	
	Any line or curve drawn passing through (not touching) the origin Must be the correct shape and			B1	
			in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must	A1	
			be on the diagram (Allow $\sqrt{\frac{9}{4}}$ for 1.5)		
			101 1.3)		(3)
1	I		I	1	(2)

(c)	A = (-2, 14), B = (1, 5)	B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	B1 B1
	These must be see		
	$(AB =)\sqrt{(-2-1)^2 + (14-5)^2} (= \sqrt{90})$	Correct use of Pythagoras <u>including</u> the square root. Must be a correct expression for their <i>A</i> and <i>B</i> if a correct formula is not quoted	M1
	E.g. $AB = \sqrt{(-2+1)^2 + (14-5)^2}$ scores M0. However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} = \sqrt{(-2+1)^2 + (14-5)^2}$ scores M1		
	$(AB =) 3\sqrt{10}$	cao	A1
			(4)
			(10 marks)

Special case: Use of $4x^3 - 9x$ for the curve gives (-2, -14) and (1, -5) in part (c). Allow this to score a maximum of B0B0M1A1 as a special case in part (c) as the length AB comes from equivalent work.

XIAI		M1: $x^n \rightarrow x^{n+1}$	
8(a)	$f(x) = x^{\frac{3}{2}} - \frac{9}{2}x^{\frac{1}{2}} + 2x(+c)$	A1: Two terms in x correct, simplification is not required in coefficients or powers A1: All terms in x correct. Simplification not required in coefficients or powers and + c is not required	M1A1A1
	Sub $x = 4, y = 9$ into $f(x) \Rightarrow c = 0$	M1: Sub $x = 4$, $y = 9$ into f (x) to	M1
	$(f(x) =) x^{\frac{3}{2}} - \frac{9}{2} x^{\frac{1}{2}} + 2x + 2$	Accept equivalents but must be simplified e.g. $f(x) = x^{\frac{3}{2}} - 4.5\sqrt{x} + 2x + 2$ Must be all 'on one line' and simplified . Allow $x\sqrt{x}$ for $x^{\frac{3}{2}}$	Al
			(
(b)	Gradient of normal is $-\frac{1}{2}$ \Rightarrow Gradient of normal is $-\frac{1}{2}$ \Rightarrow \Rightarrow Gradient of tangent = +2 \Rightarrow A1: Gradient of tangent = +2 (May be implied)		M1A1
	The A1 may be implied by $\frac{-1}{\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2} = -\frac{1}{2}$		
	$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2 = 2 \Rightarrow \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} = 0$ Sets the given $f'(x)$ or their $f'(x)$ = their changed m and not their m where m has come from $2y + x = 0$		M1
	$\times 4\sqrt{x} \Rightarrow 6x - 9 = 0 \Rightarrow x =$	$\times 4\sqrt{x}$ or equivalent correct algebraic processing (allow sign/arithmetic errors only) and attempt to solve to obtain a value for x. If $f'(x) \neq 2$ they need to be solving a three term quadratic in \sqrt{x} correctly and square to obtain a value for x. Must be using the given $f'(x)$ for this mark.	M1
	$x = 1.5$ $x = \frac{3}{2}(1.5)$ Accept equivalents e.g. $x = \frac{9}{6}$ If any 'extra' values are not rejected, score A0.		A1
	Beware $\frac{-1}{\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2} = -\frac{1}{2} \Rightarrow \frac{-2}{3\sqrt{x}} + \frac{4\sqrt{x}}{9} - \frac{1}{2} = -\frac{1}{2}$ etc. leads to the correct		
	answer and could score M1A1M1M0(incorrect processing)A0		

	Way 1	Way 2	
10		$x^2 + y^2 \text{ m4}x \pm 2y + c = 0$	M1
	Attempts to use $r^2 = (4-2)^2 + (-5+1)^2$	$4^2 + (-5)^2 - 4 \times 4 + 2 \times -5 + c = 0$	M1
	Obtains $(x-2)^2 + (y+1)^2 = 20$	$x^2 + y^2 - 4x + 2y - 15 = 0$	A1 (3)
	N.B. Special case: $(x-2)^2 - (y+1)^2 = 20$ is	not a circle equation but earns M0M1A0	
(b) Way 1			
	Tangent gradient = $-\frac{1}{\text{their numerical gradient of radius}}$		M1
	Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$		
	So equation is $x - 2y - 14 = 0$ (or $2y - x + 14 = 0$ or other integer multiples of this answer)		
	So equation is $x = 2y = 14 = 0$ (or $2y = x + 14 = 0$ or other integer multiples of this answer)		
b)Way 2	Quotes $xx' + yy' - 2(x + x') + (y + y') - 15 = 0$ and substitutes (4, -5)_		
	4x-5y-2(x+4)+(y-5)-15=0 so $2x-4y-28=0$ (or alternatives as in Way 1)		
b)Way 3	Use differentiation to find expression for gradient of circle		
	Either $2(x-2) + 2(y+1)\frac{dy}{dx} = 0$ or states $y = -1 - \sqrt{20 - (x-2)^2}$ so $\frac{dy}{dx} = \frac{(x-2)}{\sqrt{20 - (x-2)^2}}$		
	Substitute $x = 4$, $y = -5$ after valid differentiation to give gradient =		
	Then as Way 1 above $(y+5) = \frac{1}{2}(x-4)$ so $x-2y-14=0$		
	200 1,000 2,000		
			[7]

(a)
$$4(1-\cos^2 x) + \cos x = 4-k \qquad \text{Applies } \sin^2 x = 1-\cos^2 x \qquad \text{M1}$$

$$Attempts to solve $4\cos^2 x - \cos x - k = 0$, to give $\cos x =$

$$\cos x = \frac{1 \pm \sqrt{1+16k}}{8} \text{ or } \cos x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + \frac{k}{4}} \text{ or other correct equivalent}$$
(b)
$$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1 \text{ and } -\frac{3}{4} \text{ (see the note below if errors are made)}$$

$$Obtains two solutions from 0, 139, 221 \qquad (0 \text{ or } 2.42 \text{ or } 3.86 \text{ in radians)}$$

$$x = 0 \text{ and } 139 \text{ and } 221 \text{ (allow awrt } 139 \text{ and } 221 \text{) must be in degrees}$$
(3)$$

13 (a)	Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products		
	Uses volume to give $(h =) \frac{75\pi}{\pi r^2}$ or $(h =) \frac{75}{r^2}$ (simplified) (if V is misread – see below)	B1ft	
	$(C) = 6\pi r^2 + 4\pi r \left(\frac{75}{r^2}\right)$ Substitutes expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$	M1	
	$C = 6\pi r^2 + \frac{300\pi}{r}$	A1* (4)	
(b)	$C = 6\pi r^2 + \frac{300\pi}{r}$ * $\left\{ \frac{dC}{dr} = \right\} 12\pi r - \frac{300\pi}{r^2} \text{or} 12\pi r - 300\pi r^{-2} \text{ (then isw)}$	M1 A1 ft	
	$12\pi r - \frac{300\pi}{r^2} = 0$ so $r^k = \text{value where } k = \pm 2, \pm 3, \pm 4$	dM1	
	Use cube root to obtain $r = \left(their \frac{300}{12}\right)^{\frac{1}{3}} (= 2.92)$ - allow $r = 3$, and thus $C =$		
	Then $C = \text{awrt } 483 \text{ or } 484$	Alcao (5)	
(c)	$\left\{\frac{\mathrm{d}^2 C}{\mathrm{d}r^2} = \right\} 12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}$	B1ft (1) [10]	

14
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(1) States the formula for differentiation from first principles.

$$f'(x) = \lim_{h \to 0} \frac{8(x+h)^3 + 5 - (8x^3 + 5)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{8(x^3 + 3x^2h + 3xh^2 + h^3) + 5 - 8x^3 - 5)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{(24x^2h + 24xh^2 + 8h^3)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{h(24x^2 + 24xh + 8h^2)}{h}$$

$$f'(x) = \lim_{h \to 0} 24x^2 + 24xh + 8h^2$$
As $h \to 0$, $f'(x) \to 24x^2$ (1)

Correctly applies the formula to the specific function and expands and simplifies.

Factorises the 'h' out of the numerator and divides to simplify.

(1)