Paper collated from year	2014
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

Q1.
Factorise fully $25 x-9 x^{3}$
Q2.
Solve the equation

$$
10+x \sqrt{ } 8=\frac{6 x}{\sqrt{2}}
$$

Give your answer in the form $a \sqrt{ } b$ where a and b are integers.

Q3.
(a) Write $\sqrt{ } 80$ in the form $c \sqrt{ } 5$, where c is a positive constant.

A rectangle R has a length of $(1+\sqrt{ } 5) \mathrm{cm}$ and an area of $\sqrt{80} \mathrm{~cm}^{2}$.
(b) Calculate the width of R in cm . Express your answer in the form $p+q \sqrt{ } 5$, where p and q are integers to be found.

Q4.

Find the set of values of x for which
(a) $3 x-7>3-x$
(b) $x^{2}-9 x \leq 36$
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$

Q5.

$$
f(x)=2 x^{3}-7 x^{2}+4 x+4
$$

(a) Use the factor theorem to show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
(b) Factorise $\mathrm{f}(x)$ completely.

Q6.

Figure 1
Figure 1 shows a sketch of the curve C with equation

$$
y=1 / x+1, \quad x \neq 0
$$

The curve C crosses the x-axis at the point A.
(a) State the x coordinate of the point A.

The curve D has equation $y=x^{2}(x-2)$, for all real values of x.
(b) Add a sketch a graph of curve D to Figure 1.

Show on the sketch the coordinates of each point where the curve D crosses the coordinate axes.
(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$
x^{2}(x-2)=1 / x+1
$$

Q7.

Figure 2
Figure 2 shows a right angled triangle $L M N$.
The points L and M have coordinates $(-1,2)$ and $(7,-4)$ respectively.
(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Given that the coordinates of point N are (16, p), where p is a constant, and angle $L M N=90^{\circ}$,
(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,
(c) find the y coordinate of K.

Q8.

The circle C, with centre A, passes through the point P with coordinates $(-9,8)$ and the point Q with coordinates (15, -10).

Given that $P Q$ is a diameter of the circle C,
(a) find the coordinates of A,
(b) find an equation for C.

A point R also lies on the circle C.
Given that the length of the chord $P R$ is 20 units,
(c) find the length of the shortest distance from A to the chord $P R$.

Give your answer as a surd in its simplest form.
(d) Find the size of the angle $A R Q$, giving your answer to the nearest 0.1 of a degree.

Q9.

Differentiate with respect to x, giving each answer in its simplest form.
(a) $(1-2 x)^{2}$
(b) $\frac{x^{5}+6 \sqrt{ } x}{2 x^{2}}$

Q10.

Figure 4
Figure 4 shows the plan of a pool.
The shape of the pool $A B C D E F A$ consists of a rectangle $B C E F$ joined to an equilateral triangle $B F A$ and a semi-circle CDE, as shown in Figure 4.

Given that $A B=x$ metres, $E F=y$ metres, and the area of the pool is $50 \mathrm{~m}^{2}$,
(a) show that

$$
\begin{equation*}
y=\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{ } 3) \tag{3}
\end{equation*}
$$

(b) Hence show that the perimeter, P metres, of the pool is given by

$$
\begin{equation*}
P=\frac{100}{x}+\frac{x}{4}(\pi+8-2 \sqrt{ } 3) \tag{3}
\end{equation*}
$$

(c) Use calculus to find the minimum value of P, giving your answer to 3 significant figures.
(d) Justify, by further differentiation, that the value of P that you have found is a minimum.

Q11.

Use integration to find

$$
\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x
$$

giving your answer in the form $a+b \sqrt{ } 3$, where a and b are constants to be determined.

Q12.

Figure 3
Figure 3 shows a sketch of part of the curve C with equation

$$
y=\frac{1}{8} x^{3}+\frac{3}{4} x^{2}, \quad x \in \mathbb{R}
$$

The curve C has a maximum turning point at the point A and a minimum turning point at the origin O. The line / touches the curve C at the point A and cuts the curve C at the point B.

The x coordinate of A is -4 and the x coordinate of B is 2 .
The finite region R, shown shaded in Figure 3, is bounded by the curve C and the line I.
Use integration to find the area of the finite region R.

Q13.

(i) Solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
9 \sin \left(\theta+60^{\circ}\right)=4
$$

giving your answers to 1 decimal place.
You must show each step of your working.
(ii) Solve, for $-\pi \leq x<\pi$, the equation

$$
2 \tan x-3 \sin x=0
$$

giving your answers to 2 decimal places where appropriate.
[Solutions based entirely on graphical or numerical methods are not acceptable.]
Q14.
A rare species of primrose is being studied. The population, P, of primroses at time t years after the study started is modelled by the equation

$$
P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}, \quad t \geq 0, t \in \mathbb{R} .
$$

(a) Calculate the number of primroses at the start of the study.
(b) Find the exact value of t when $P=250$, giving your answer in the form $a \ln (b)$ where a and b are integers.

Q15.

Find the exact solution, in its simplest form, to the equation
$2 \ln (2 x+1)-10=0$

Q16.

Relative to a fixed origin O, the point A has position vector $\left(\begin{array}{r}-2 \\ 4 \\ 7\end{array}\right)$
and the point B has position vector $\left(\begin{array}{r}-1 \\ 3 \\ 8\end{array}\right)$
The line I_{1} passes through the points A and B.
(a) Find the vector $\overrightarrow{A B}$.

Q17

Calculate the derivative of $g(x)=2 x-3$ from first principles.

Mark scheme

Q1.

Question Number	Scheme	Marks
	$25 x-9 x^{3}=x\left(25-9 x^{2}\right)$	B1
	$\left.25-9 x^{2}\right)=(5+3 x)(5-3 x)$ $25 x-9 x^{3}=x(5+3 x)(5-3 x)$	M1
		A1

Q2.

Question Number	Scheme	Marks
$\begin{gathered} \text { Method } \\ 1 \end{gathered}$	$\begin{aligned} & x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \\ & \times \sqrt{2} \Rightarrow x \sqrt{16}+10 \sqrt{2}=6 x \\ & 4 x+10 \sqrt{2}=6 x \Rightarrow 2 x=10 \sqrt{2} \\ & x=5 \sqrt{2} \end{aligned} \text { or } a=5 \text { and } b=2 .$	M1,A1 M1A1 (4)
$\begin{gathered} \text { Method } \\ 2 \end{gathered}$	$\begin{aligned} & x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \\ & 2 \sqrt{2} x+10=3 \sqrt{2} x \\ & \sqrt{2} x=10 \Rightarrow x=\frac{10}{\sqrt{2}}=\frac{10 \sqrt{2}}{2},=5 \sqrt{2} \quad \text { oe } \end{aligned}$	M1A1 M1,A1 (4)

Q3.

Question Number	Scheme		Marks
	(a) $\begin{aligned} 80 & =5 \times 16 \\ \sqrt{80} & =4 \sqrt{5} \end{aligned}$ Method 1 $\text { (b) } \begin{aligned} & \frac{\sqrt{80}}{\sqrt{5}+1} \text { or } \frac{c \sqrt{5}}{\sqrt{5}+1} \\ = & \frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text { or } \frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\ = & \frac{20-4 \sqrt{5}}{4} \quad \text { or } \\ = & \frac{4 \sqrt{5}-20}{-4} \\ = & 5-\sqrt{5} \end{aligned}$	$\begin{aligned} & \text { Method } 2 \\ & (p+q \sqrt{ })(\sqrt{ } 5+1)=\sqrt{ } 80 \\ & p \sqrt{ } 5+q \sqrt{ } 5+p+5 q=4 \sqrt{ } 5 \\ & p+5 q=0 \\ & p+q=4 \\ & p=5, q=-1 \end{aligned}$	B1 (1) B1ft M1 A1 Alcao
			$\begin{array}{r} \text { (4) } \\ \text { (5 marks) } \end{array}$

Q4.

Question Number	Scheme	Marks
	(a) $\begin{aligned} & 3 x-7>3-x \\ & 4 x>10 \\ & x>2.5, \quad x>\frac{5}{2}, \quad \frac{5}{2}<x \quad \text { o.e. } \end{aligned}$ (b) Obtain $x^{2}-9 x-36$ and attempt to solve $x^{2}-9 x-36=0$ $\begin{gathered} \text { e.g. }(x-12)(x+3)=0 \text { so } x=, \quad \text { or } x=\frac{9 \pm \sqrt{81+144}}{2} \\ 12,-3 \\ -3 \leq x \leq 12 \end{gathered}$ (c) $2.5<x \leq 12$	M1 A1 (2) M1 A1 M1A1 (4) Alcso (1) (7 marks)

Q5.

Question Number	Scheme		Marks
	If there is no labelling, mark (a) and (b) in that order		
(a)	$\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-7 x^{2}+4 x+4$		
	$\mathrm{f}(2)=2(2)^{3}-7(2)^{2}+4(2)+4$	Attempts $f(2)$ or $f(-2)$	M1
	$=0$, and so $(x-2)$ is a factor.	$f(2)=0$ with no sign or substitution errors $\left(2(2)^{3}-7(2)^{2}+4(2)+4=0\right.$ is sufficient $)$ and for conclusion. Stating "hence factor" or it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not $=0$ just underlined and not hence (2 or $f(2)$) is a factor. Note also that a conclusion can be implied from a preamble, eg: "If $\mathrm{f}(2)=0,(x-2)$ is a factor.	A1
	Note: Long division scores no marks in part (a). The factor theorem is required.		
			2]
(b)	$f(x)=\{(x-2)\}\left(2 x^{2}-3 x-2\right)$	M1: Attempts long division by $(x-2)$ or other method using $(x-2)$, to obtain ($2 x^{2} \pm a x \pm b$), $a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection."	M1 A1
		A1: $\left(2 x^{2}-3 x-2\right)$	
	$\begin{aligned} & =(x-2)(x-2)(2 x+1) \operatorname{or}(x-2)^{2}(2 x+1) \\ & \quad \text { or equivalent e.g. } \\ & =2(x-2)(x-2)\left(x+\frac{1}{2}\right) \text { or } 2(x-2)^{2}\left(x+\frac{1}{2}\right) \end{aligned}$	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors.	dM1 A1
		Al: cao - needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation)	
	Note $=(x-2)\left(\frac{1}{2} x-1\right)(4 x+2)$ would lose the last mark as it is not fully factorised		
	For correct answers only award full marks in (b)		
			[4]
			Total 6

Q6.

Q7.

Question Number	Scheme	Marks
(a)	$\begin{gather*} \text { Method 1 } \\ \text { gradient }=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{2-(-4)}{-1-7},=-\frac{3}{4} \left\lvert\, \begin{array}{c} \text { Method 2 } \\ y-2=-\frac{3}{4}(x+1) \text { or } y+4=-\frac{3}{4}(x-7) \text { or } y=\text { their' }-\frac{3}{4} \cdot x+c \\ \Rightarrow \pm(4 y+3 x-5)=0 \end{array}\right. \\ \begin{array}{l} y_{2}-y_{1} \\ y-\text { so } \frac{y-y_{1}}{6}=\frac{x-x_{1}}{-8} \\ \Rightarrow \end{array} \tag{4} \end{gather*}$	$\mathrm{M} 1, \mathrm{~A} 1$ M1 A1
	Method 3: Substitute $x=-1, y=2$ and $x=7, y=-4$ into $a x+b y+c=0$ $-a+2 b+c=0 \text { and } 7 a-4 b+c=0$ Solve to obtain $a=3, b=4$ and $c=-5$ or multiple of these numbers	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 A1 } \end{aligned}$
(b)	Attempts gradient $L M \times$ gradient $M N=-1$ Or $(y+4)=\frac{4}{3}(x-7)$ equation so $-\frac{3}{4} \times \frac{p+4}{16-7}=-1$ or $\frac{p+4}{16-7}=\frac{4}{3}$ with $x=16$ substituted $p+4=\frac{9 \times 4}{3} \Rightarrow p=\ldots \quad, p=8$ So $y=, y=8$	M1 $\mathrm{M} 1, \mathrm{Al}$
		(3)
Alternative for (b)	Attempt Pythagoras: $(p+4)^{2}+9^{2}+\left(6^{2}+8^{2}\right)=(p-2)^{2}+17^{2}$ So $p^{2}+8 p+16+81+36+64=p^{2}-4 p+4+289 \Rightarrow p=\ldots$ $p=8$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
(c)	$\begin{array}{c\|l} \text { Either }(y=) p+6 \text { or } 2+p+4 & \begin{array}{l} \text { Or use } 2 \text { perpendicular line equations } \\ \text { through } \mathrm{L} \text { and } N \text { and solve for } y \end{array} \\ (y=) 14 \end{array}$	(3) M1 A1
		$\begin{array}{r} (2) \\ (9 \text { marks }) \end{array}$

Q8.

Question Number	Scheme		Marks
(d)	$\begin{aligned} & \sin (A \hat{R} Q)=\frac{20}{30} \text { or } \\ & A \hat{R} Q=90-\cos ^{-1}\left(\frac{10}{15}\right) \end{aligned}$	$\begin{aligned} & \sin (A \hat{R} Q)=\frac{20}{(2 \times \text { their } r)} \text { or } \frac{10}{\text { their } r} \\ & \text { or } A \hat{R} Q=90-\cos ^{-1}\left(\frac{10}{\text { their } r}\right) \\ & \text { or } A \hat{R} Q=\cos ^{-1}\left(\frac{\text { Part }(c)}{\text { their } r}\right) \\ & \text { or } A \hat{R} Q=90-\sin ^{-1}\left(\frac{\text { Part }(c)}{\text { their } r}\right) \end{aligned}$ $\text { or } 20^{2}=15^{2}+15^{2}-2 \times 15 \times 15 \cos (2 \text { ARQ })$ or $15^{2}=15^{2}+(10 \sqrt{5})^{2}-2 \times 15 \times 10 \sqrt{5} \cos (\text { ARQ })$ A fully correct method to find $A \hat{R} Q$, where their $r>10$. Must be a correct statement involving angle $A R Q$	M1
	$A \widehat{R Q}=41.8103 \ldots$	awrt 41.8	A1
			[2]
			Total 9

Q9.

Question Number	Scheme	Marks
	(a) $\begin{gathered} (1-2 x)^{2}=1-4 x+4 x^{2} \\ \frac{\mathrm{~d}}{\mathrm{~d} x}(1-2 x)^{2}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(1-4 x+4 x^{2}\right)=-4+8 x \text { o.e. } \end{gathered}$	M1 M1A1 (3)
	Alternative method using chain rule: Answer of -4 (1-2x)	M1M1A1
	(b) $\frac{x^{5}+6 \sqrt{x}}{2 x^{2}}=\frac{x^{5}}{2 x^{2}}+6 \frac{\sqrt{x}}{2 x^{2}},=\frac{1}{2} x^{3}+3 x^{-\frac{3}{2}}$ Attempts to differentiate $x^{-\frac{3}{2}}$ to give $k x^{-\frac{5}{2}}$ $=\frac{3}{2} x^{2}-\frac{9}{2} x^{-\frac{5}{2}} \text { o.e. }$ Quotient Rule (May rarely appear) - See note below	M1,A1 M1 A1 (7 marks)

Q10.

Question Number	Scheme		Marks
(a)	$\{A=\} x y+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}+\frac{1}{2} x^{2} \sin 60^{\circ}$	M1: An attempt to find 3 areas of the form: \qquad A1: Correct expression for A (terms must be added)	M1A1
	$\begin{array}{r} 50=x y+\frac{\pi x^{2}}{8}+\frac{\sqrt{3} x^{2}}{4} \Rightarrow y=\frac{50}{x} \\ \text { Correct proof } \end{array}$	$\frac{\pi x}{8}-\frac{\sqrt{3} x}{4} \Rightarrow y=\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{3}) *$ h no errors seen	A1 *
			3
(b)	$\{P=\} \frac{\pi x}{2}+2 x+2 y$	Correct expression for P in terms of x and y	B1
	$P=\frac{\pi x}{2}+2 x+2\left(\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{ } 3)\right)$	Substitutes the given expression for y into an expression for P where P is at least of the form $\alpha x+\beta y$	M1
	$P=\frac{\pi x}{2}+2 x+\frac{100}{x}-\frac{\pi x}{4}-\frac{\sqrt{3}}{2} x \Rightarrow P=\frac{100}{x}+\frac{\pi x}{4}+2 x-\frac{\sqrt{3}}{2} x$		
	$\Rightarrow P=\frac{100}{x}+\frac{x}{4}(\pi+8-2 \sqrt{3})$	Correct proof with no errors seen	A1 *
			[3]
	(Note $\frac{\pi+8-2 \sqrt{3}}{4}=1.919 \ldots \ldots$)		
(c) and (d) can be marked together	$\frac{\mathrm{d} P}{\mathrm{dx}}=-100 x^{-2}+\frac{\pi+8-2 \sqrt{3}}{4}$	M1: Either $\mu x \rightarrow \mu$ or $\frac{100}{x} \rightarrow \frac{ \pm \lambda}{x^{2}}$ A1: Correct differentiation (need not be simplified). Allow $-100 x^{-2}+($ awrt1.92 $)$	M1A1
	$-100 x^{-2}+\frac{\pi+8-2 \sqrt{3}}{4}=0 \Rightarrow x=\ldots$	Their $P^{\prime}=0$ and attempt to solve as far as $x=\ldots$. (ignore poor manipulation)	M1
	$\Rightarrow x=\sqrt{\frac{400}{\pi+8-2 \sqrt{3}}}=7.2180574 \ldots$	$\sqrt{\frac{400}{\pi+8-2 \sqrt{3}}}$ or awrt 7.2 and no other values	A1
	$\{x=7.218 \ldots,\} \Rightarrow P=27.708 \ldots$ (m)	awrt 27.7	A1
			[5]
	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} \mathrm{x}^{2}}=\frac{200}{x^{3}}>0 \Rightarrow \text { Minimum }$	M1: Finds $P^{\prime \prime}\left(x^{n} \rightarrow x^{n-1}\right.$ allow for constant $\rightarrow 0$) and considers sign	M1A1ft
		Alft: $\frac{200}{x^{3}}$ (need not be simplified) and >0 and conclusion. Only follow through on a correct $P^{\prime \prime}$ and a single positive value of x found earlier.	
			[2]
			Total 13

Question	Scheme	Marks
	M1: $x^{n} \rightarrow x^{n+1}$	
	A1: At least one of either $\frac{x^{4}}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$.	
	$\left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}=\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)} \quad \begin{array}{l\|l} \text { A1: } \frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)} \text { or equivalent. } \\ \text { e.g. } \frac{x^{4}}{4}+\frac{x^{-1}}{3} \\ \text { if they cannot deal with this correctly) } \end{array}$	M1A1A1
	Note that some candidates may change the function prior to integrating e.g. $\int \frac{x^{3}}{6}+\frac{1}{3 x^{2}} \mathrm{~d} \mathrm{~d}=\int 3 x^{5}+6 \mathrm{dx}$ in which case allow the M if $x^{n} \rightarrow x^{n+1}$ for their changed function and allow the $\mathbf{M l}$ for limits if scored	
	$\left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(\sqrt{3})^{-1}}{-1(3)}\right)-\left(\frac{(1)^{4}}{24}+\frac{(1)^{-1}}{-1(3)}\right)$	dM1
	$2^{\text {24 }} \mathrm{dM} 1$: For using limits of $\sqrt{3}$ and 1 on an integrated expression and subtracting the correct way round. The $2^{\text {nd }} \mathrm{Ml}$ is dependent on the $\mathrm{l}^{\text {tt }} \mathrm{Ml}$ being awarded.	
	$=\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{1}{9} \sqrt{3} \quad$$\frac{2}{3}-\frac{1}{9} \sqrt{3}$ or $a=\frac{2}{3}$ and $b=-\frac{1}{9}$. Allow equivalent fractions for a and/or b and 0.6 recurring and or 0.1 recurring but do not allow $\frac{6-\sqrt{3}}{9}$	Alcso
	This final mark is cao and cso - there must have been no previous errors	
		Total 5
	Common Errors (Usually 3 out of 5)	
	$\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}-\int\left(\frac{x^{3}}{6}+3 x^{-2}\right) \mathrm{dx}-\frac{x^{4}}{6(4)}+\frac{3 x^{-1}}{(-1)} \text { M1A1A0 } \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{3(\sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{3(1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}+\frac{3}{-1}\right)=\frac{10}{3}-\sqrt{3} \text { A0 } \end{gathered}$	
	$\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\int\left(\frac{x^{3}}{6}+(3 x)^{-2}\right) \mathrm{d} x=\frac{x^{4}}{6(4)}+\frac{(3 x)^{-1}}{(-1)} \text { M1A1A0 } \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}-\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(3 \sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{(3 \times 1)^{-1}}{-1}\right) \mathrm{dM1} \\ =\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{\sqrt{3}}{9} \mathrm{~A} 0 \end{gathered}$ Note this is the correct answer but follows incorrect work.	

Q12.

Question Number	Scheme		Marks
	$\int\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x=\frac{x^{4}}{32}+\frac{x^{3}}{4}\{+c\}$	M1: $x^{n} \rightarrow x^{n+1}$ on either term	M1A1
		A1: $\frac{x^{4}}{32}+\frac{x^{3}}{4}$. Any correct simplified or un-simplified form. (+ c not required)	
	$\begin{gathered} {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{2}=\left(\frac{16}{32}+\frac{8}{4}\right)-\left(\frac{256}{32}+\frac{(-64)}{4}\right)} \\ {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{0}=(0)-\left(\frac{(-4)^{4}}{32}+\frac{(-4)^{3}}{4}\right) \text { added to }\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{0}^{2}=\left(\frac{(2)^{4}}{32}+\frac{(2)^{3}}{4}\right)-(0)} \end{gathered}$		dM1
	Substitutes limits of 2 and -4 into an "integrated function" and subtracts either way round. Or substitutes limits of 0 and -4 and 2 and 0 into an "integrated function" and subtracts either way round and adds the two results.		
	$=\frac{21}{2}$	$\frac{21}{2}$ or 10.5	A1
	$\{$ At $x=-4, y=-8+12=4$ or at $x=2, y=1+3=4\}$		
	```Area of Rectangle \(=6 \times 4=24\) or Area of Rectangles \(=4 \times 4=16\) and \(2 \times 4=8\)```		M1
	Evidence of $(4--2) \times$ their $y_{-4}$ or $(4--2) \times$ their $y_{2}$ or Evidence of $4 \times$ their $y_{-4}$ and $2 \times$ their $y_{2}$		
	So, area $(R)=24-\frac{21}{2}=\frac{27}{2}$ dddM1: Area rectangle -   integrated answer. Dependent   on all previous method marks   and requires:   Rectangle $>$ integration $>0$   A1: $\frac{27}{2}$ or 13.5		dddM1A1
			Total 7


	Alternative:		
	$\pm$ "their 4 " $-\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x$	Line - curve. Condone missing brackets and allow either way round.	$4^{\text {th }}$ M1
		M1: $x^{n} \rightarrow x^{n+1}$ on either curve term	$\begin{aligned} & 1^{\mathrm{st}^{\mathrm{m}} \mathrm{M} 1,1^{\mathrm{st}}} \\ & \mathrm{~A} 1 \mathrm{ft} \end{aligned}$
	$=4 x-\frac{x^{4}}{32}-\frac{x^{3}}{4}\{+c\}$	Alft: " $-\frac{x^{4}}{32}-\frac{x^{3}}{4} . "$ Any correct simplified or un-simplified form of their curve terms, follow through sign errors. ( +c not required)	
	$[]_{-4}^{2}=\left(8-\frac{16}{32}-\frac{8}{4}\right)-\left(-16-\frac{256}{32}-\frac{(-64)}{4}\right)$	$2^{\text {nd }}$ M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round.	$\begin{aligned} & 2^{\text {nd }} \mathrm{M} 1,3^{\text {rd }} \\ & \mathrm{M} 1 \\ & 2^{\text {nd }} \mathrm{Al} \end{aligned}$
		$3^{\text {rd }} \text { M1 for } \pm\left(" 8^{\prime \prime}-\text { " }-16^{\prime \prime}\right)$   Substitutes limits into the 'line part' and subtracts either way round.	
		$2^{\text {nd }} \mathrm{A} 1$ for correct $\pm$ (underlined expression). Now needs to be correct but allow $\pm$ the correct expression.	
	$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	$3^{\text {rd }} \mathrm{A} 1$
	If the final answer is -13.5 you can withhold the final A1 If -13.5 then "becomes" +13.5 allow the A1		


Question   Number	Scheme		Marks
	(i) $9 \sin \left(\theta+60^{\circ}\right)=4 ; 0 \leq \theta<360^{\circ}$   (ii) $2 \tan x-3 \sin x=0 ;-\pi \leq x<\pi$		
(i)	$\begin{gathered} \sin \left(\theta+60^{\circ}\right)=\frac{4}{9}, \text { so }\left(\theta+60^{\circ}\right)=26.3877 \ldots \\ (\alpha=26.3877 \ldots) \end{gathered}$	Sight of $\sin ^{-1}\left(\frac{4}{9}\right)$ or awrt $26.4^{\circ}$ or $0.461^{c}$   Can also be implied for $\theta=$ awrt -33.6 (i.e. $26.4-60)$	M1
	So, $\theta+60^{\circ}=\{153.6122 \ldots, 386.3877 \ldots\}$	$\theta+60^{\circ}=$ either " $180-$ their $\alpha$ " or   " $360^{\circ}+$ their $\alpha$ " and not for $\theta=$ either   " 180 - their $\alpha$ " or " $360^{\circ}+$ their $\alpha$ ". This   can be implied by later working. The candidate's $\alpha$ could also be in radians but do not allow mixing of degrees and radians.	M1
	and $\theta=\{93.6122 \ldots, 326.3877 \ldots\}$	A1: At least one of awrt $93.6^{\circ}$ or awrt $326.4^{\circ}$	A1 A1
		A1: Both awrt $93.6{ }^{\circ}$ and awrt $326.4{ }^{\circ}$	
	Both answers are cso and must come from correct work		
	Ignore extra solutions outside the range.   In an otherwise fully correct solution deduct the final A1for any extra solutions in range		
			[4]
(ii)	$2\left(\frac{\sin x}{\cos x}\right)-3 \sin x=0$	Applies $\tan x=\frac{\sin x}{\cos x}$	M1
	Note: Applies $\tan x=\frac{\sin x}{\cos x}$ can be implied by $2 \tan x-3 \sin x=0 \Rightarrow \tan x(2-3 \cos x)$		
	$2 \sin x-3 \sin x \cos x=0$		
	$\sin x(2-3 \cos x)=0$		
	$\cos x=\frac{2}{3}$	$\cos x=\frac{2}{3}$	A1
	$x=\operatorname{awrt}\{0.84,-0.84\}$	A1: One of either awit 0.84 or awnt -0.84	AlAlft
		Alft: You can apply ft for $x= \pm \alpha$, where $\alpha=\cos ^{-1} k$ and $-1 \leq k \leq 1$	
	In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the Alft.		
	$\{\sin x=0 \Rightarrow\} x=0$ and $-\pi$	Both $x=0$ and $-\pi$ or awnt -3.14 from $\sin x=0$   In this part of the solution, ignore extra solutions in range.	B1
	Note solutions are: $x=\{-3.1415 \ldots,-0.8410 \ldots, 0,0.8410 \ldots\}$   Ignore extra solutions outside the range		
	For all answers in degrees in (ii) M1A1A0A1fB0 is possible		
	Allow the use of $\theta$ in place of $x$ in (ii)		
			[5]
			Total 9

Q14.

Question Number	Scheme	Marks
(a)	$P=\frac{800 \mathrm{e}^{0}}{1+3 \mathrm{e}^{0}},=\frac{800}{1+3}=200$	M1,A1
(b)	$\begin{gathered} 250=\frac{800 e^{0.1 t}}{1+3 e^{0.1 t}} \\ 250\left(1+3 \mathrm{e}^{0.1 t}\right)=800 \mathrm{e}^{0.1 t} \Rightarrow 50 \mathrm{e}^{0.1 t}=250, \Rightarrow \mathrm{e}^{0.1 t}=5 \end{gathered}$	M1,A1
	$\begin{aligned} & t=\frac{1}{0.1} \ln (5) \\ & t=10 \ln (5) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		(4)

Q15.

Question   Number	Scheme	Marks
(a)	$2 \ln (2 x+1)-10=0 \Rightarrow \ln (2 x+1)=5 \Rightarrow 2 x+1=e^{5} \Rightarrow x=\ldots$	M1
	$\Rightarrow x=\frac{e^{5}-1}{2}$	A1

Q16.

$$
\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

Q17.
SOLUTION
Step 1: Write down the formula for finding the derivative using first principles

$$
\begin{equation*}
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \tag{M1}
\end{equation*}
$$

Step 2: Determine $g(x+h)$

$$
\begin{aligned}
g(x) & =2 x-3 \\
g(x+h) & =2(x+h)-3 \\
& =2 x+2 h-3
\end{aligned}
$$

Step 3: Substitute into the formula and simplify

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{2 x+2 h-3-(2 x-3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h} \\
& =\lim _{h \rightarrow 0} 2 \\
& =2
\end{aligned}
$$

Step 4: Write the final answer
The derivative $g^{\prime}(x)=2$.

