Paper collated from year	2014
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

Q1.

Factorise fully $25x - 9x^3$

Q2.

Solve the equation

 $10 + x\sqrt{8} = \frac{6x}{\sqrt{2}}$

Give your answer in the form $a\sqrt{b}$ where *a* and *b* are integers.

(4)

(1)

(3)

Q3.

(a) Write $\sqrt{80}$ in the form $c\sqrt{5}$, where *c* is a positive constant.

A rectangle *R* has a length of $(1 + \sqrt{5})$ cm and an area of $\sqrt{80}$ cm².

(b) Calculate the width of *R* in cm. Express your answer in the form $p + q\sqrt{5}$, where *p* and *q* are integers to be found.

(4)

Q4.

Find the set of values of *x* for which

(a) 3x - 7 > 3 - x

(b) $x^2 - 9x \le 36$

(2)

(c) both 3x - 7 > 3 - x and $x^2 - 9x \le 36$ (1)

Q5.

$f(x) = 2x^3 - 7x^2 + 4x + 4$

(a) Use the factor theorem to show that (x - 2) is a factor of f(x).

(2)

(b) Factorise f(x) completely.

(4)

Figure 1

Figure 1 shows a sketch of the curve C with equation

 $y = \frac{1}{x} + 1, \qquad x \neq 0$

The curve C crosses the x-axis at the point A.

(a) State the *x* coordinate of the point *A*.

The curve *D* has equation $y = x^2(x - 2)$, for all real values of *x*.

(b) Add a sketch a graph of curve *D* to *Figure 1*. Show on the sketch the coordinates of each point where the curve *D* crosses the coordinate axes.

(3)

(1)

(1)

(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$x^{2}(x-2) = \frac{1}{x} + 1.$$

Figure 2 shows a right angled triangle LMN.

The points L and M have coordinates (-1, 2) and (7, -4) respectively.

(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

Given that the coordinates of point N are (16, p), where p is a constant, and angle LMN = 90°,

(b) find the value of *p*.

(3)

(4)

Given that there is a point K such that the points L, M, N, and K form a rectangle,

(c) find the *y* coordinate of *K*.

(2)

Q8.

The circle *C*, with centre *A*, passes through the point *P* with coordinates (-9, 8) and the point *Q* with coordinates (15, -10).

Given that PQ is a diameter of the circle C,

(a) find the	coordinates of A,
--------------	-------------------

	(2)
(b) find an equation for <i>C</i> .	
	(3)

A point *R* also lies on the circle *C*. Given that the length of the chord *PR* is 20 units,

(c) find the length of the shortest distance from *A* to the chord *PR*. Give your answer as a surd in its simplest form.

(d) Find the size of the angle ARQ,	giving your answer to the nearest 0.1 of a degree.
	giving your another to the hearest off of a degreer

(2)

(2)

(4)

Q9.

Differentiate with respect to x, giving each answer in its simplest form.

(a) $(1 - 2x)^2$ (b) $\frac{x^5 + 6\sqrt{x}}{2x^2}$ (3)

Figure 4

Figure 4 shows the plan of a pool.

The shape of the pool *ABCDEFA* consists of a rectangle *BCEF* joined to an equilateral triangle *BFA* and a semi-circle *CDE*, as shown in Figure 4.

Given that AB = x metres, EF = y metres, and the area of the pool is 50 m²,

(a) show that

$$y = \frac{50}{x} - \frac{x}{8}(\pi + 2\sqrt{3})$$

(3)

(b) Hence show that the perimeter, P metres, of the pool is given by

$$P = \frac{100}{x} + \frac{x}{4} \left(\pi + 8 - 2\sqrt{3}\right)$$

(3)

(c) Use calculus to find the minimum value of P, giving your answer to 3 significant figures.

(5)

(d) Justify, by further differentiation, that the value of P that you have found is a minimum.

(2)

Q11.

Use integration to find

$$\int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) \mathrm{d}x$$

giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

Q12.

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = \frac{1}{8}x^3 + \frac{3}{4}x^2, \quad x \in \mathbb{R}$$

The curve C has a maximum turning point at the point A and a minimum turning point at the origin O.

The line I touches the curve C at the point A and cuts the curve C at the point B.

The *x* coordinate of *A* is -4 and the *x* coordinate of *B* is 2.

The finite region *R*, shown shaded in Figure 3, is bounded by the curve *C* and the line *I*.

Use integration to find the area of the finite region *R*.

(7)

(5)

Q13.

(i) Solve, for $0 \le \theta < 360^\circ$, the equation

 $9\sin(\theta + 60^\circ) = 4$

giving your answers to 1 decimal place. You must show each step of your working.

(ii) Solve, for $-\pi \le x < \pi$, the equation

 $2\tan x - 3\sin x = 0$

giving your answers to 2 decimal places where appropriate. [Solutions based entirely on graphical or numerical methods are not acceptable.]

Q14.

A rare species of primrose is being studied. The population, P, of primroses at time t years after the study started is modelled by the equation

$$P = \frac{800e^{0.1t}}{1+3e^{0.1t}}, \quad t \ge 0, t \in \mathbb{R}.$$

(a) Calculate the number of primroses at the start of the study.

Q15.

Find the exact solution, in its simplest form, to the equation

 $2 \ln (2x + 1) - 10 = 0$

Q16.

Relative to a fixed origin O, the point A has position vector

and the point B has position vector

The line l_1 passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

Q17

Calculate the derivative of g(x)=2x-3 from first principles.

(b) Find the exact value of t when P = 250, giving your answer in the form a ln(b) where a and b are integers.

3

(2)

(4)

(2)

(4)

(5)

(2)

(4)

Mark scheme

Q1.

Question Number	Scheme	Marks
	$25x - 9x^3 = x(25 - 9x^2)$	B1
	$(25-9x^2) = (5+3x)(5-3x)$	M1
	$25x - 9x^3 = x(5 + 3x)(5 - 3x)$	A1
		(3)

Q2.

Question Number	Scheme	Marks
Method 1	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $\times\sqrt{2} \Rightarrow x\sqrt{16} + 10\sqrt{2} = 6x$ $4x + 10\sqrt{2} = 6x \Rightarrow 2x = 10\sqrt{2}$ $x = 5\sqrt{2}$ or $a = 5$ and $b = 2$	M1,A1 M1A1 (4)
Method 2	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $2\sqrt{2}x + 10 = 3\sqrt{2}x$ $\sqrt{2}x = 10 \implies x = \frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}, = 5\sqrt{2} \text{oe}$	M1A1 M1,A1 (4)

Question Number	Scheme		Marks	Ş.
	(a) $80 = 5 \times 16$ $\sqrt{80} = 4\sqrt{5}$ Method 1	Method 2	B1	(1)
	(b) $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c\sqrt{5}}{\sqrt{5}+1}$	$(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$	B1ft	
	$=\frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text{or} \frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	$p\sqrt{5}+q\sqrt{5}+p+5q=4\sqrt{5}$	M1	
	$=\frac{20-4\sqrt{5}}{4}$ or $\frac{4\sqrt{5}-20}{-4}$	p+5 q = 0 p+q=4 p=5, q=-1	A1	
	$=5-\sqrt{5}$	p = 5, q = -1	A1cao	
			(5 m;	(4)

Q4.

Question Number	Scheme	Marks	
	(a) $3x-7 > 3-x$ 4x > 10	M1	
	$x > 2.5, x > \frac{5}{2}, \frac{5}{2} < x$ o.e.	A1	
	(b) Obtain $x^2 - 9x - 36$ and attempt to solve $x^2 - 9x - 36 = 0$	(2	
	e.g. $(x-12)(x+3) = 0$ so $x = $, or $x = \frac{9 \pm \sqrt{81+144}}{2}$	M1	
	12, -3 $-3 \le x \le 12$	A1 M1A1	
	(c) $2.5 < x \le 12$	(4 Alcso	
		(7 marks) (1	

Q3.

Question Number	Scheme		Marks		
	If there is no labelling, mark (a) and (b) in that order				
	$\mathbf{f}(x) = 2x^3 - \mathbf{f}(x) + \mathbf{f}(x)$	$-7x^2 + 4x + 4$			
	$f(2) = 2(2)^{3} - 7(2)^{2} + 4(2) + 4$	Attempts f(2) or f(-2)	M1		
(a)	= 0, and so $(x - 2)$ is a factor.	f(2) = 0 with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or f(2)) is a factor. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(2) = 0$, $(x - 2)$ is a factor"	A1		
	Note: Long division scores no marks in part (a). The <u>factor theorem</u> is required.		[2		
(Ь)	$\mathbf{f}(x) = \left\{ (x-2) \right\} (2x^2 - 3x - 2)$	M1: Attempts long division by $(x - 2)$ or other method using $(x - 2)$, to obtain $(2x^2 \pm ax \pm b)$, $a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection." A1: $(2x^2 - 3x - 2)$	M1 A1		
	$= (x-2)(x-2)(2x+1) \operatorname{or} (x-2)^{2}(2x+1)$ or equivalent e.g. $= 2(x-2)(x-2)(x+\frac{1}{2}) \operatorname{or} 2(x-2)^{2}(x+\frac{1}{2})$	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors.	dM1 A1		
		A1: cao – needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.)			
	Note = $(x - 2)(\frac{1}{2}x - 1)(4x + 2)$ would lose the last mark as it is not fully factorised				
	For correct answers only award full marks in (b)				
			[4]		
			Total 6		

Q7.

Question Number		Scheme	Marks	5
	Method 1	Method 2		
(a)	gradient = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - (-4)}{-1 - 7}$, = $-\frac{3}{4}$	$\frac{3}{4} \qquad \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}, \text{ so } \frac{y - y_1}{6} = \frac{x - x_1}{-8}$	M1, A1	
	$y-2 = -\frac{3}{4}(x+1)$ or $y+4 =$	$-\frac{3}{4}(x-7)$ or $y = their' -\frac{3}{4}'x + c$	M1	
	$\Rightarrow \pm (4y)$	(x+3x-5)=0	A1	(4)
	Method 3: Substitute $x = -1$, $y = 2$ and	dx = 7, y = -4 into $ax + by + c = 0$	M1	
	-a + 2b + c = 0 and $7a - 4b + c = 0$		A1	
	Solve to obtain $a = 3$, $b = 4$ and $c =$	-5 or multiple of these numbers	M1 A1	(4)
(b)	Attempts gradient LM × gradient MN so $-\frac{3}{4} \times \frac{p+4}{16-7} = -1$ or $\frac{p+4}{16-7} = \frac{4}{3}$	with $x = 16$ substituted	M1	
	$p+4=\frac{9\times 4}{2} \Rightarrow p=\dots, p=$	8 So $y =, y = 8$	M1, A1	
	3			(3
Alternative for (b)	Attempt Pythagoras: $(p+4)^2 + 9^2 + $	$(6^2 + 8^2) = (p - 2)^2 + 17^2$	M1	
	So $p^2 + 8p + 16 + 81 + 36 + 64 = p^2$	$p^2 - 4p + 4 + 289 \implies p = \dots$	M1	
	<i>p</i> =	8	A1	
	1		100200	(3
(c)	Either ($y=$) $p+6$ or $2+p+4$	Or use 2 perpendicular line equations through L and N and solve for y	M1	
	(y =) 1		A1	0.0225
			(91	(2 narks

Q6.

Q8.

Question Number	Scheme		Marks
(a)	$A\left(\frac{-9+15}{2},\frac{8-10}{2}\right) = A(3,-1)$	M1: A correct attempt to find the midpoint between P and Q . Can be implied by one of x or y -coordinates correctly evaluated. A1: $(3, -1)$	M1A1
			[2
(b)	$(-9-3)^{2} + (8+1)^{2} \text{ or } \sqrt{(-9-3)^{2} + (8+1)^{2}}$ or $(15-3)^{2} + (-10+1)^{2} \text{ or } \sqrt{(15-3)^{2} + (-10+1)^{2}}$ Uses Pythagoras correctly in order to find the radius . Must clearly be identified as the radius and may be implied by their circle equation. Or $(15+9)^{2} + (-10-8)^{2}$ or $\sqrt{(15+9)^{2} + (-10-8)^{2}}$ Uses Pythagoras correctly in order to find the diameter . Must clearly be identified as the diameter and may be implied by their circle equation. This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation) Allow this mark if there is a correct statement involving the radius or the diameter but must be seen in (b)		М1
	$(x-3)^{2} + (y+1)^{2} = 225 \text{ (or } (15)^{2})$	$(x \pm \alpha)^2 + (y \pm \beta)^2 = k^2$ where $A(\alpha, \beta)$ and k is their radius.	M1
	$(x-3)^2 + (y+1)^2 = 225$	Allow $(x-3)^2 + (y+1)^2 = 15^2$	A1
	Accept correct answer only		
		2.2.2.2.2	[3
		$x^{2} + 2ax + y^{2} + 2by + c = 0$	
		$dx^{2} + 2ax + y^{2} + 2by + c = 0$ $(x + y^{2} + 2(1)y + c = 0)$	M1
		$c^{2} + 2ax + y^{2} + 2by + c = 0$ (8) ² + 2(1)(8) + c = 0 \Rightarrow c = -215	M1
	$x^2 - 6x + y^2 + 2y - 215 = 0$		A1
(c)	Distance = $\sqrt{15^2 - 10^2}$	$= \sqrt{(\text{their } r)^2 - 10^2} \text{ or a correct method}$ for the distance e.g. their $r \times \cos\left[\sin^{-1}\left(\frac{10}{\text{their}r}\right)\right]$	M1
	$\{=\sqrt{125}\}=5\sqrt{5}$	5√5	A1
			[2

Question Number		Scheme	Marks
	$\sin\left(\widehat{ARQ}\right) = \frac{20}{30} \text{ or}$ $\widehat{ARQ} = 90 - \cos^{-1}\left(\frac{10}{15}\right)$	$\sin(\widehat{ARQ}) = \frac{20}{(2 \times \text{their } r)} \text{ or } \frac{10}{\text{their } r}$ or $\widehat{ARQ} = 90 - \cos^{-1}\left(\frac{10}{\text{their } r}\right)$ or $\widehat{ARQ} = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $\widehat{ARQ} = 90 - \sin^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $20^2 = 15^2 + 15^2 - 2 \times 15 \times 15 \cos(2ARQ)$ or $15^2 = 15^2 + (10\sqrt{5})^2 - 2 \times 15 \times 10\sqrt{5} \cos(ARQ)$ A fully correct method to find \widehat{ARQ} , where their $r > 10$. Must be a correct statement involving angle ARQ	M1
	$A\hat{R}Q = 41.8103$	awrt 41.8	A1
İ			[2]
			Total 9

Q9.

Question Number	Scheme	Marks
	(a) $(1-2x)^2 = 1-4x+4x^2$	M1
	(a) $(1-2x)^2 = 1-4x+4x^2$ $\frac{d}{dx}(1-2x)^2 = \frac{d}{dx}(1-4x+4x^2) = -4+8x$ o.e.	M1A1
		(3)
	Alternative method using chain rule: Answer of $-4(1-2x)$	M1M1A1 (3
	(b) $\frac{x^5 + 6\sqrt{x}}{2x^2} = \frac{x^5}{2x^2} + 6\frac{\sqrt{x}}{2x^2}, = \frac{1}{2}x^3 + 3x^{-\frac{3}{2}}$	M1,A1
	Attempts to differentiate $x^{-\frac{3}{2}}$ to give $k x^{-\frac{5}{2}}$	M1
	$=\frac{3}{2}x^2-\frac{9}{2}x^{-\frac{5}{2}}$ o.e.	A1
	Quotient Rule (May rarely appear) - See note below	(4)
	Contraction designs to approximate proceed there are provided in the contract of the contra	(7 marks)

Question Marks Scheme Number M1: An attempt to find 3 areas of the form: $\{A = \} xy + \frac{\pi}{2} \left(\frac{x}{2}\right)^2 + \frac{1}{2} x^2 \sin 60^*$ xy, $p\pi x^2$ and qx^2 M1A1 A1: Correct expression for A (terms must be added) (a) $50 = xy + \frac{\pi x^2}{9} + \frac{\sqrt{3}x^2}{4} \implies y = \frac{50}{x} - \frac{\pi x}{8} - \frac{\sqrt{3}x}{4} \implies y = \frac{50}{x} - \frac{x}{8}(\pi + 2\sqrt{3})^*$ A1 * Correct proof with no errors seen [3] Correct expression for P in terms of x ${P = }\frac{\pi x}{2} + 2x + 2y$ **B1** and y Substitutes the given expression for y $P = \frac{\pi x}{2} + 2x + 2\left(\frac{50}{x} - \frac{x}{8}(\pi + 2\sqrt{3})\right)$ into an expression for P where P is at M1 least of the form $\alpha x + \beta y$ (b) $P = \frac{\pi x}{2} + 2x + \frac{100}{x} - \frac{\pi x}{4} - \frac{\sqrt{3}}{2}x \implies P = \frac{100}{x} + \frac{\pi x}{4} + 2x - \frac{\sqrt{3}}{2}x$ $\Rightarrow P = \frac{100}{x} + \frac{x}{4} \left(\pi + 8 - 2\sqrt{3}\right)$ Correct proof with no errors seen A1 * [3] (Note $\frac{\pi + 8 - 2\sqrt{3}}{4} = 1.919.....)$ M1: Either $\mu x \to \mu$ or $\frac{100}{x} \to \frac{\pm \lambda}{x^2}$ $\frac{dP}{dx} = -100x^{-2} + \frac{\pi + 8 - 2\sqrt{3}}{4}$ M1A1 A1: Correct differentiation (need not be simplified). Allow -100x-2 + (awrt1.92) $-100x^{-2} + \frac{\pi + 8 - 2\sqrt{3}}{4} = 0 \Rightarrow x = \dots$ Their P' = 0 and attempt to solve as far as M1 x = (ignore poor manipulation) $\sqrt{\frac{400}{\pi+8-2\sqrt{3}}}$ or awrt 7.2 and no other $\Rightarrow x = \sqrt{\frac{400}{\pi + 8 - 2\sqrt{3}}} = 7.2180574...$ A1 (c) and values

awrt 27.7

M1: Finds $P''(x^n \to x^{n-1}$ allow for

constant $\rightarrow 0$) and considers sign

value of x found earlier.

A1ft: $\frac{200}{x^3}$ (need not be simplified) and

> 0 and conclusion. Only follow through on a correct P' and a single positive A1

M1A1ft

[5]

[2] Total 13

Q10.

(d)

can be

marked

together

 $\{x = 7.218...,\} \implies P = 27.708...$ (m)

 $\frac{d^2 P}{dx^2} = \frac{200}{x^3} > 0 \implies \text{Minimum}$

Question Number			
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)} $ A1: $\frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$	one of either $\frac{x^4}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$. $\frac{x^{-1}}{(3)(-1)}$ or equivalent.	M1A1A1
		-1 3 (they will lose the final mark bt deal with this correctly) prior to integrating e.g.	
	$\int \frac{x^3}{6} + \frac{1}{3x^2} dx = \int 3x^5 + 6 dx \text{ in which case allow the M1 i}$		
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^4}{24} + \frac{\left(\sqrt{3}\right)^{-1}}{-1(3)} \right) - \left(\frac{(1)^4}{24} + \frac{(1)^{-1}}{-1(3)} \right)$		dM1
	2^{nd} dM1: For using limits of $\sqrt{3}$ and 1 on an integrated expression and subtracting the correct way round. The 2^{nd} M1 is dependent on the 1^{st} M1 being awarded.		
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24} - \frac{1}{3}\right) = \frac{2}{3} - \frac{1}{9}\sqrt{3}$ Allow equiv 0.6 recurring allow $\frac{6-\sqrt{3}}{9}$		Alcso
	This final mark is cao and cso – there must have b	een no previous errors	T . 17
	Common Errors (Usually 3 out of 5)		Total 5
	$\left\{\int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx\right\} = \int \left(\frac{x^3}{6} + 3x^{-2}\right) dx = \frac{x^4}{6(4)}$	$+\frac{3x^{-1}}{(-1)}$ M1A1A0	
	$\left\{\int_{1}^{\sqrt{5}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}}\right) dx\right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{3\left(\sqrt{3}\right)^{-1}}{-1}\right) - $	$\left(\frac{(1)^4}{24} + \frac{3(1)^{-1}}{-1}\right) dM1$	
	$= \left(\frac{9}{24} - \frac{3}{\sqrt{3}}\right) - \left(\frac{1}{24} + \frac{3}{-1}\right) = \frac{10}{3} - \frac{1}{24} + \frac{3}{-1} = \frac{10}{3} - \frac{10}{3}$	√3 A0	
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \int \left(\frac{x^3}{6} + (3x)^{-2}\right) dx = \frac{x^4}{6(4)}$	$+\frac{(3x)^{-1}}{(-1)}$ M1A1A0	
	$\left\{\int_{1}^{\sqrt{6}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}}\right) dx\right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{\left(3\sqrt{3}\right)^{-1}}{-1}\right) - \left(\frac{1}{3}\right)^{-1} = \left(\frac$	$\frac{(1)^4}{24} + \frac{(3 \times 1)^{-1}}{-1} dM1$	
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24} - \frac{1}{3}\right) = \frac{2}{3} - \frac{1}{3}$		
	Note this is the correct answer but follows	incorrect work.	

Q11.

Question Number	Scheme	
	$\int \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx = \frac{x^4}{32} + \frac{x^3}{4} \{+c\}$ M1: $x^n \to x^{n+1}$ A1: $\frac{x^4}{32} + \frac{x^3}{4}$. A simplified or un form. (+ c not respectively)	ny correct M1A1
	$\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^2 = \left(\frac{16}{32} + \frac{8}{4}\right) - \left(\frac{256}{32} + \frac{(-64)}{4}\right)$ or $\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^0 = \left(0\right) - \left(\frac{\left(-4\right)^4}{32} + \frac{\left(-4\right)^3}{4}\right) \text{ added to} \left[\frac{x^4}{32} + \frac{x^3}{4}\right]_0^2 = \left(\frac{(2)}{32}\right)$	$\left \frac{1}{2}^{4} + \frac{(2)^{3}}{4}\right - (0)$
	Substitutes limits of 2 and -4 into an "integrated function" and way round. Or substitutes limits of 0 and -4 and 2 and 0 into function" and subtracts either way round and adds the tw	an "integrated
	$=\frac{21}{2}$ $\frac{21}{2}$ or 10.5	A1
1	{At $x = -4$, $y = -8 + 12 = 4$ or at $x = 2$, $y = 1 + 3 =$	4}
	Area of Rectangle = $6 \times 4 = 24$ or Area of Rectangles = $4 \times 4 = 16$ and $2 \times 4 = 8$	M1
	Evidence of (42) × their y_{-4} or (42) × their or Evidence of 4 × their y_{-4} and 2 × their y_2	<i>y</i> ₂
	So, area(R) = $24 - \frac{21}{2} = \frac{27}{2}$ So, area(R) = $24 - \frac{21}{2} = \frac{27}{2}$ Al: $\frac{27}{2}$ or 13.5	method marks dddM1A1 ategration > 0
8	2 0 13.	Total 7

Alternative	<u>e:</u>	
$\pm \int "\text{their4}" - \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx$	Line – curve. Condone missing brackets and allow either way round.	4 th M1
	M1: $x^n \to x^{n+1}$ on either curve term	
$= 4x - \frac{x^4}{32} - \frac{x^3}{4} \{+c\}$	A1ft: " $-\frac{x^4}{32} - \frac{x^3}{4}$." Any correct simplified or un-simplified form of their curve terms, follow through sign errors. (+ c not required)	1 st M1,1 st A1ft
	2 nd M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round.	
$\left[\begin{array}{c}\right]_{-4}^{2} = \underbrace{\left(8 - \frac{16}{32} - \frac{8}{4}\right) - \left(-16 - \frac{256}{32} - \frac{(-64)}{4}\right)}_{4}$	3 rd M1 for ±("8"-"-16") Substitutes limits into the 'line part' and subtracts either way round.	2 nd M1, 3 ⁿ M1 2 nd A1
	2 nd A1 for correct ± (underlined expression). Now needs to be correct but allow ± the correct expression.	
$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	3 rd A1
$= \frac{27}{2}$ If the final answer is -13.5 you ca If -13.5 then "becomes" +1	2 on withhold the final A1	3 ^{ra} A

Question Number	Scheme		
	(i) $9\sin(\theta + 60^{\circ})$	$=4; 0 \le \theta < 360^{\circ}$	
		$\mathbf{x} = 0; \ -\pi \le \mathbf{x} < \pi$	
(i)	$\sin(\theta + 60^\circ) = \frac{4}{9}$, so $(\theta + 60^\circ) = 26.3877$ $(\alpha = 26.3877)$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461° Can also be implied for $\theta = awrt - 33.6$ (i.e. 26.4 - 60)	М1
	So, θ + 60° = {153.6122, 386.3877}	$\theta + 60^{\circ}$ = either "180 – their α " or "360° + their α " and not for θ = either "180 – their α " or "360° + their α ". This can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.	M1
		A1: At least one of	
	and $\theta = \{93.6122, 326.3877\}$	awrt 93.6° or awrt 326.4°	A1 A1
		A1: Both awrt 93.6° and awrt 326.4°	
		nust come from correct work	
	Ignore extra solutions outside the range.		
	In an otherwise fully correct solution deduct the final A1for any extra solutions in range		[4
(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	M1
	cosx	d by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$	
	$2\sin x - 3\sin x \cos x = 0$		
	$\sin x(2-3\cos x)=0$		
	$\cos x = \frac{2}{3}$	$\cos x = \frac{2}{3}$	A1
	$x = \operatorname{awrt}\{0.84, -0.84\}$	A1: One of either awrt 0.84 or awrt -0.84 A1ft: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1}k$ and $-1 \le k \le 1$	AlAlft
	In this part of the solution, if there are any extra answers in range in an otherwise		
	correct solution withhold the Alft.		
	$\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$	Both $x = 0$ and $-\pi$ or awrt -3.14 from sinx = 0 In this part of the solution, ignore extra solutions in range.	B1
	Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$		
	Ignore extra solutions outside the range		
	For all answers in degrees in (ii) M1A1A0A1ftB0 is possible		
	Allow the use of θ in place of x in (ii)		
			[5
			Total 9

Q13.

Question Number	Scheme	Marks
(a)	$P = \frac{800e^0}{1+3e^0}, = \frac{800}{1+3} = 200$	M1,A1 (2
(b)	$250 = \frac{800e^{0.1t}}{1+3e^{0.1t}}$ $250(1+3e^{0.1t}) = 800e^{0.1t} \Longrightarrow 50e^{0.1t} = 250, \implies e^{0.1t} = 5$	M1,A1
	$t = \frac{1}{0.1} \ln(5)$ $t = 10 \ln(5)$	M1 A1
		(4

| Q15.

Question Number	Scheme	Marks
(a)	$2\ln(2x+1) - 10 = 0 \Rightarrow \ln(2x+1) = 5 \Rightarrow 2x+1 = e^5 \Rightarrow x =$	M1
	$\Rightarrow x = \frac{e^5 - 1}{2}$	A1
		(2)

Q16.

 $\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$

Q17.

SOLUTION

Step 1: Write down the formula for finding the derivative using first principles

$$g'\left(x
ight)=\lim_{h
ightarrow0}rac{g\left(x+h
ight)-g\left(x
ight)}{h}$$
 M1

Step 2: Determine g(x+h)

g(x)=2x-3

$$g\left(x+h
ight)=2\left(x+h
ight)-3$$
 $=2x+2h-3$
M1

Step 3: Substitute into the formula and simplify

$$g'(x) = \lim_{h \to 0} \frac{2x + 2h - 3 - (2x - 3)}{h}$$

= $\lim_{h \to 0} \frac{2h}{h}$ M1
= $\lim_{h \to 0} 2$
= 2

Step 4: Write the final answer

The derivative $g^{\prime}\left(x
ight) =2.$

A1dep