Paper collated from year	2012
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

Q1.

Complete each of the following by putting the best connecting symbol $(\Leftrightarrow, \Leftarrow \text{ or } \Rightarrow)$ in the box. Explain your choice, giving full reasons.

(ii)
$$(x-3)(x-2) > 0$$
 $x > 3$ [2]

Q2.

Simplify
$$\frac{\sqrt{32 + \sqrt{18}}}{3 + \sqrt{2}}$$

giving your answer in the form $b\sqrt{2}+c$, where b and c are integers.

Q3.

$$4x - 5 - x^2 = q - (x + p)^2$$

where p and q are integers.

(a) Find the value of p and the value of q.

(b) Calculate the discriminant of $4x - 5 - x^2$ (2)

(c) On the axes on page 17, sketch the curve with equation $y = 4x - 5 - x^2$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

(3)

A rectangular garden is to have width x metres and length (x + 4) metres.

(a) The perimeter of the garden needs to be greater than 30 metres.

Show that 2x > 11. (1 mark)

(b) The area of the garden needs to be less than 96 square metres.

Show that
$$x^2 + 4x - 96 < 0$$
. (1 mark)

(c) Solve the inequality
$$x^2 + 4x - 96 < 0$$
. (4 marks)

(d) Hence determine the possible values of the width of the garden. (1 mark)

Q5.

A circle with centre C has equation $x^2 + y^2 + 14x - 10y + 49 = 0$.

(a) Express this equation in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

- **(b)** Write down:
 - (i) the coordinates of C;

- (d) A line has equation y = kx + 6, where k is a constant.
 - (i) Show that the x-coordinates of any points of intersection of the line and the circle satisfy the equation $(k^2 + 1)x^2 + 2(k + 7)x + 25 = 0$. (2 marks)
 - (ii) The equation $(k^2 + 1)x^2 + 2(k + 7)x + 25 = 0$ has equal roots. Show that

$$12k^2 - 7k - 12 = 0 (3 marks)$$

(iii) Hence find the values of k for which the line is a tangent to the circle. (2 marks)

\sim	^
IJ	h.

(a) Show that the equation

$$\tan 2x = 5 \sin 2x$$

can be written in the form

$$(1 - 5\cos 2x)\sin 2x = 0$$
 (2)

(b) Hence solve, for $0 \le x \le 180^\circ$,

$$\tan 2x = 5 \sin 2x$$

giving your answers to 1 decimal place where appropriate. You must show clearly how you obtained your answers.

(5)

Q7.

You are given that $f(x) = 2x^3 - 3x^2 - 23x + 12$.

(i) Show that
$$x = -3$$
 is a root of $f(x) = 0$ and hence factorise $f(x)$ fully. [6]

(ii) Sketch the curve
$$y = f(x)$$
. [3]

(iii) Find the x-coordinates of the points where the line y = 4x + 12 intersects y = f(x). [4]

Figure 1 shows a sketch of the curve C with equation y = f(x) where

$$f(x) = x^2(9 - 2x)$$

There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A.

(a) Write down the coordinates of the point A.

(1)

(b) On separate diagrams sketch the curve with equation

(i)
$$y = f(x + 3)$$

(ii)
$$y = f(3x)$$

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

(6)

The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10).

(c) Write down the value of k.

(1)

(a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$\left(1+\frac{x}{4}\right)^8$$

giving each term in its simplest form.

(4)

(b) Use your expansion to estimate the value of $(1.025)^8$, giving your answer to 4 decimal places.

(3)

Figure 3

Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius x metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to x metres and width equal to y metres.

Given that the area of the flowerbed is 4 m²,

(a) show that

$$y = \frac{16 - \pi x^2}{8x}$$
 (3)

(b) Hence show that the perimeter P metres of the flowerbed is given by the equation

$$P = \frac{8}{x} + 2x\tag{3}$$

(c) Use calculus to find the minimum value of *P*.

(5)

(d) Find the width of each rectangle when the perimeter is a minimum. Give your answer to the nearest centimetre.

(2)

Figure 2

Figure 2 shows the line with equation y = 10 - x and the curve with equation $y = 10x - x^2 - 8$

The line and the curve intersect at the points A and B, and O is the origin.

(a) Calculate the coordinates of A and the coordinates of B.

(5)

The shaded area R is bounded by the line and the curve, as shown in Figure 2.

(b) Calculate the exact area of R.

(7)

Q12.

The vectors \mathbf{p} and \mathbf{q} are given by

$$\mathbf{p} = 8\mathbf{i} + \mathbf{j}$$
 and $\mathbf{q} = 4\mathbf{i} - 7\mathbf{j}$.

(i) Show that **p** and **q** are equal in magnitude.

[3]

(ii) Show that $\mathbf{p} + \mathbf{q}$ is parallel to $2\mathbf{i} - \mathbf{j}$.

[2]

- (iii) Draw $\mathbf{p} + \mathbf{q}$ and $\mathbf{p} \mathbf{q}$ on the grid.
 - Write down the angle between these two vectors.

[3]

Given that $y = 3x^2$,

(a) show that $\log_3 y = 1 + 2\log_3 x$

(3)

(b) Hence, or otherwise, solve the equation

$$1 + 2\log_3 x = \log_3(28x - 9)$$

(3)

Mark scheme

Q1. Problem Solving

(i)	'if <i>n</i> even then n^3 even, so $n^3 + 1$ odd' oe	B1	must mention n^3 is even or even ³ is even or even × even = even	0 for just 'if <i>n</i> is even, <i>n</i> ³ + 1 is odd' 0 if just examples of numbers used
	\Leftarrow with if $n^3 + 1$ odd then n^3 even but if n^3 is even, n is not necessarily an integer or	В1		condone ↔ instead of ⇔ etc in both parts
	\Leftrightarrow with ' $n^3 + 1$ odd then n^3 even so n even', [assuming n is an integer]		or ' \Leftrightarrow with if <i>n</i> is odd, n^3 is odd, so $n^3 + 1$ is even'	
		[2]	if 0 in question, allow SC1 for \Leftrightarrow or \Leftarrow and attempt at using general odd/even in explanation	must go further than restating the info in the qn; please annotate as SC
(ii)	showing \Leftarrow is true	B1	eg when $x > 3$, $+ve \times +ve > 0$	0 for just example(s) or for simply stating it is true
	\Leftarrow chosen and showing that \Rightarrow [and therefore \Leftrightarrow] is/ are not true	В1	stating that true when $x < 2$ or giving a counterexample such as 1, 0 or a negative number [to show quadratic inequality also true for this number]	0 for saying another solution $x > 2$
		[2]	allow B2 for \Leftarrow and $x > 3$ and $x < 2$ shown/stated as soln or sketch showing two solns of $x^2 - 5x + 6 > 0$	or B1 for this argument with another symbol

Q2. Surds Indices

Q3. Quadratic functions

Q4. Equations and Inequalities

Q5. Coordinate Geometry

(a)	$(x+7)^{2}$	2+((v-5)	2
(**)	(4 . 7)	٠, /	ر سر	,

M1

A1

$$(x+7)^2 + (y-5)^2 = 5^2$$

A1cao

)(i)
$$C(-7, 5)$$

B1√

$$r = 5$$

B1√

M1

A1

)(i)
$$x^2 + (kx+6)^2 + 14x - 10(kx+6) + 49 = 0$$

$$x^{2} + k^{2}x^{2} + 12kx + 36 + 14x$$
$$-10kx - 60 + 49 = 0$$
$$(1 + k^{2})x^{2} + 2kx + 14x + 25 = 0$$
$$\Rightarrow (k^{2} + 1)x^{2} + 2(k + 7)x + 25 = 0$$

M1

A1cso

(ii) Equal roots '
$$b^2 - 4ac = 0$$
'

B1

$$[2(k+7)]^{2} - 4 \times 25(k^{2}+1)$$

$$4\{k^{2}+14k+49-25k^{2}-25\} = 0$$

$$-24k^{2}+14k+24=0$$

M1

$$\Rightarrow 12k^2 - 7k - 12 = 0$$

A1

iii)
$$(4k+3)(3k-4)$$

M1

$$\Rightarrow k = -\frac{3}{4}, \ k = \frac{4}{3} \quad \text{OE}$$

A1

are values of k for which line is a tangent

Q6. Coordinate Geometry

States or uses $\tan 2x = \frac{\sin 2x}{\cos 2x}$	M1
$\frac{\sin 2x}{\cos 2x} = 5\sin 2x \Rightarrow \sin 2x - 5\sin 2x \cos 2x = 0 \Rightarrow \sin 2x (1 - 5\cos 2x) = 0$	A1 (2)
$\sin 2x = 0$ gives $2x = 0$, 180, 360 so $x = 0$, 90, 180 B1 for two correct answers, second B1 for all three correct. Excess in range – lose last B1	B1, B1
$\cos 2x = \frac{1}{5}$ gives $2x = 78.46$ (or 78.5 or 78.4) or $2x = 281.54$ (or 281.6)	M1
x = 39.2 (or 39.3), 140.8 (or 141)	A1, A1 (5)
	7 marks

Q7. Polynomials

(i)	f(-3) used	M1
	-54 - 27 + 69 + 12 = 0 isw	A1
	attempt at division by $(x + 3)$ as far as	Ml
	$2x^3 + 6x^2$ in working	
	correctly obtaining $2x^2 - 9x + 4$	A1
	factorising the correct quadratic factor	M1
	(2x-1)(x-4)[(x+3)] isw	A1
(ii)	sketch of cubic right way up, with two turning points	B1
	values of intns on x axis shown, correct (-3, 0.5 and 4) or ft from their factors or roots in (i)	B1
	12 marked on y-axis	B1
		[3]
(iii)	$2x^3 - 3x^2 - 23x + 12 = 4x + 12$ oe	M1
	$2x^3 - 3x^2 - 27x = 0$	A1
	[x](2x-9)(x+3) = 0	M1
	[x =] 0, -3 and 9/2 oe	A1

Q8. Graphs &Transformations

Q9. The binomial expansion

(a).	$(1+\frac{x}{4})^8 = 1+2x+,$	B1
	$+\frac{8\times7}{2}(\frac{x}{4})^2+\frac{8\times7\times6}{2\times3}(\frac{x}{4})^3$	M1 A1
	$= +\frac{7}{4}x^2 + \frac{7}{8}x^3 \text{or} = +1.75x^2 + 0.875x^3$	A1
b)	States or implies that $x = 0.1$	В1
	Substitutes their value of x (provided it is <1) into series obtained in (a)	M1
	i.e. $1 + 0.2 + 0.0175 + 0.000875$, = 1.2184	A1 cao (3)

Q10. Differentiation

Q11. Integration

1		
Puts $10 - x = 10x - x^2 - 8$ and	Or puts $y = 10(10 - y) - (10 - y)^2 - 8$	M1
rearranges to give three term quadratic	and rearranges to give three term quadratic	M1
Solves their " $x^2 - 11x + 18 = 0$ " using acceptable method as in general principles	Solves their " $y^2 - 9y + 8 = 0$ " using acceptable method as in general principles to	IVII
to give x =	give $y =$	
Obtains $x = 2$, $x = 9$ (may be on	Obtains $y = 8$, $y = 1$ (may be on diagram)	A1
diagram or in part (b) in limits)	Substitutes their wints a given equation to	MI
Substitutes their x into a given equation to give $y = (may be on diagram)$	Substitutes their y into a given equation to give $x = $ (may be on diagram or in part (b))	M1
y = 8, y = 1	x = 2, x = 9	A1 (5)
$\int (10x - x^2 - 8) \mathrm{d}x = \frac{10x^2}{2} - \frac{x^3}{3} - 8x \{ + \frac{x^2}{3} - \frac{x^3}{3} - 8x \} $	c}	MI AI Al
$\left[\frac{10x^2}{2} - \frac{x^3}{3} - 8x\right]_2^9 = (\dots) - (\dots)$		
$=90 - \frac{4}{3} = 88\frac{2}{3} \text{ or } \frac{266}{3}$		
Area of trapezium = $\frac{1}{2}(8+1)(9-2) = 31$.5	В1
So area of <i>R</i> is $88\frac{2}{3} - 31.5 = 57\frac{1}{6}$ or $\frac{343}{6}$		M1A1
3 210 27 6 01 6		cao
		12
		marks

Q12. Vectors

(i)	$ \mathbf{p} = \sqrt{8^2 + 1^2}$	M1	For applying Pythagoras theorem
	$ \mathbf{p} = \sqrt{8^2 + 1^2}$ $ \mathbf{p} = \sqrt{65}$	A1	
	$ \mathbf{q} = \sqrt{4^2 + (-7)^2} = \sqrt{65}$ They are equal	Al	Condone no explicit statement that they are equal
		[3]	
(ii)	$\mathbf{p} + \mathbf{q} = 12\mathbf{i} - 6\mathbf{j}$	M1	
	$\mathbf{p} + \mathbf{q} = 6(2\mathbf{i} - \mathbf{j})$ so $\mathbf{p} + \mathbf{q}$ is parallel to $2\mathbf{i} - \mathbf{j}$	E1	Accept argument based on gradients being equal. "Parallel" may be implied
		[2]	
(iii)		B1 B1	One mark for each of $\mathbf{p} + \mathbf{q}$ and $\mathbf{p} - \mathbf{q}$ drawn correctly SC1 if arrows missing or incorrect from otherwise correct vectors
	The angle is 90°	B1	Cao
		[3]	

Q13. Logs and Exponentials

(a)	$\log_3 3x^2 = \log_3 3 + \log_3 x^2$ or $\log y - \log x^2 = \log 3$ or	B1
	$\log_3 3x^2 = \log_3 3 + \log_3 x^2$ or $\log y - \log x^2 = \log 3$ or $\log y - \log 3 = \log x^2$ $\log_3 x^2 = 2\log_3 x$	B1
	Using $\log_3 3 = 1$	B1 (3)
b)	$3x^2 = 28x - 9$	M1
	Solves $3x^2 - 28x + 9 = 0$ to give $x = \frac{1}{3}$ or $x = 9$	M1 A1 (3)