Paper collated from year	2011
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

1. (a) Find the value of $16^{-\frac{1}{4}}$

(2)

(b) Simplify
$$x(2x^{-\frac{1}{4}})^4$$

(2)

2. Find

$$\int (12x^5 - 3x^2 + 4x^{\frac{1}{3}}) \, \mathrm{d}x$$

giving each term in its simplest form.

(5)

3. Simplify

$$\frac{5-2\sqrt{3}}{\sqrt{3}-1}$$

giving your answer in the form $p+q\sqrt{3}$, where p and q are rational numbers.

(4)

4.

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = (x+1)(x-5)$$

The curve crosses the x-axis at the points A and B.

(a) Write down the x-coordinates of A and B.

(1)

The finite region R, shown shaded in Figure 1, is bounded by C and the x-axis.

(b) Use integration to find the area of R.

(6)

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x) where

$$f(x) = \frac{x}{x-2}, \quad x \neq 2$$

The curve passes through the origin and has two asymptotes, with equations y = 1 and x = 2, as shown in Figure 1.

(a) In the space below, sketch the curve with equation y = f(x-1) and state the equations of the asymptotes of this curve.

(3)

(b) Find the coordinates of the points where the curve with equation y = f(x-1) crosses the coordinate axes.

(4)

6.

(a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.

(2)

(b) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0$$

giving your answers to 2 decimal places where appropriate.

The curve with equation y = f(x) passes through the point (-1,0). Given that $f'(x) = 12x^2 - 8x + 1$ find f(x). **(5)** The equation $x^2 + (k-3)x + (3-2k) = 0$, where k is a constant, has two distinct real 8. roots. (a) Show that k satisfies $k^2 + 2k - 3 > 0$ **(3)** (b) Find the set of possible values of k. **(4)** The line L_1 has equation 2y-3x-k=0, where k is a constant. Given that the point A (1,4) lies on L_1 , find (a) the value of k, **(1)** (b) the gradient of L₁. **(2)** The line L_2 passes through A and is perpendicular to L_1 . (c) Find an equation of L_2 giving your answer in the form ax + by + c = 0, where a, b and c are integers. **(4)** The line L_2 crosses the x-axis at the point B.

(2)

(2)

(d) Find the coordinates of B.

(e) Find the exact length of AB.

10. (a) On the axes below, sketch the graphs of

(i)
$$y = x(x+2)(3-x)$$

(ii)
$$y = -\frac{2}{x}$$

showing clearly the coordinates of all the points where the curves cross the coordinate axes.

(6)

(b) Using your sketch state, giving a reason, the number of real solutions to the equation

$$x(x+2)(3-x) + \frac{2}{x} = 0$$
 (2)

11. The curve C has equation

$$y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \qquad x > 0$$

(a) Find $\frac{dy}{dx}$.

(b) Show that the point P(4, -8) lies on C.

(2)

(c) Find an equation of the normal to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(6)

12.

The points A and B have coordinates (-2, 11) and (8, 1) respectively.

Given that AB is a diameter of the circle C,

(a) show that the centre of C has coordinates (3, 6),

(1)

(b) find an equation for C.

(4)

(c) Verify that the point (10, 7) lies on C.

(1)

(d) Find an equation of the tangent to C at the point (10, 7), giving your answer in the form y = mx + c, where m and c are constants.

(4)

13.

The volume $V \text{ cm}^3$ of a box, of height x cm, is given by

$$V = 4x(5-x)^2$$
, $0 < x < 5$

(a) Find $\frac{\mathrm{d}V}{\mathrm{d}x}$.

(b) Hence find the maximum volume of the box.

(4)

(c) Use calculus to justify that the volume that you found in part (b) is a maximum.

(2)

Mark scheme

1. (a)	$16^{\frac{1}{4}} = 2 \text{or} \frac{1}{16^{\frac{1}{4}}} \text{or better}$	M1	
	$\left(16^{-\frac{1}{4}} = \right) \frac{1}{2} \text{ or } 0.5 \qquad \text{(ignore } \pm\text{)}$	A1	
			(2)
(b)	$\left(2x^{-\frac{1}{4}}\right)^4 = 2^4x^{-\frac{4}{4}}$ or $\frac{2^4}{x^{\frac{4}{4}}}$ or equivalent	M1	
	$x\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 \text{ or } 16$	A1 cao	
			(2) 4

2.
$$\left(\int = \right) \frac{12x^6}{6}, -\frac{3x^3}{3}, +\frac{4x^{\frac{4}{3}}}{\frac{4}{3}}, (+c)$$

$$= \underline{2x^6 - x^3 + 3x^{\frac{4}{3}} + c}$$
A1

3.
$$\frac{5-2\sqrt{3}}{\sqrt{3}-1} \times \frac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)}$$

$$= \frac{\dots}{2}$$

$$\text{Numerator} = 5\sqrt{3} + 5 - 2\sqrt{3}\sqrt{3} - 2\sqrt{3}$$

$$\text{So } \frac{5-2\sqrt{3}}{\sqrt{3}-1} = -\frac{1}{2} + \frac{3}{2}\sqrt{3}$$

$$\text{A1}$$

4.	Seeing -1 and 5. (See note below.)		B1
(4)			(1)
(b)	$(x+1)(x-5) = x^2 - 4x - 5$ or $x^2 - 5x + x - 5$		<u>B1</u>
	$(x+1)(x-5) = \underline{x^2 - 4x - 5} \text{ or } \underline{x^2 - 5x + x - 5}$ $\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{+c\}$	M: $x^n \to x^{n+1}$ for any one term. 1 st A1 at least two out of three terms correctly ft.	M1A1ft A1
	$\left[\frac{x^3}{3} - \frac{4x^2}{2} - 5x\right]_{-1}^5 = (\dots) - (\dots)$	Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1
	$\begin{cases} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \\ = \left(-\frac{100}{3}\right) - \left(\frac{8}{3}\right) = -36 \end{cases}$		
	Hence, Area = 36	Final answer must be 36, not −36	A1 (6) [7]

(b)

x = 0.5645...

x = 0

At least two of the three criteria correct. (See notes below.)

All three criteria correct. (See notes below.)

В1

В1

 $\{(y-3)(y-1) = 0 \text{ or } (7^x - 3)(7^x - 1) = 0\}$ $y = 3, y = 1 \text{ or } 7^x = 3, 7^x = 1$ $\{7^x = 3 \Rightarrow\} x \log 7 = \log 3$

or $x = \frac{\log 3}{\log 7}$ or $x = \log_7 3$

Forming a quadratic {using

"
$$v$$
" = 7^x }.

$$y^2 - 4y + 3 = 0$$
 A1

Both
$$y = 3$$
 and $y = 1$. A1

 $7^x = k$ where $k > 0, k \neq 1$

$$x = 0$$
 stated as a solution.

(2)

0.565 or awrt 0.56 Α1

$$x = 0$$
 stated as a solution. B1

(6) [8]

5

7.
$$(f(x) =) \frac{12x^3}{3} - \frac{8x^2}{2} + x(+c)$$

$$(f(-1) = 0 \Rightarrow) \quad 0 = 4 \times (-1) - 4 \times 1 - 1 + c$$

$$c = \underline{9}$$

$$[f(x) = 4x^3 - 4x^2 + x + 9]$$

$$A1$$

				1
8.	(a)	$b^{2} - 4ac = (k-3)^{2} - 4(3-2k)$ $k^{2} - 6k + 9 - 4(3-2k) > 0$ or $(k-3)^{2} - 12 + 8k > 0$ or better $k^{2} + 2k - 3 > 0$ *	M1	
		$k^2 - 6k + 9 - 4(3 - 2k) > 0$ or $(k-3)^2 - 12 + 8k > 0$ or better	M1	
		$k^2 + 2k - 3 > 0$ *	A1cso	
		$\frac{\kappa + 2\kappa - 3 > 0}{}$	Aicso	(3)
				(5)
	(b)	(k+3)(k-1)[=0]	M1	
		Critical values are $k = 1$ or -3	A1	
		(choosing "outside" region)	M1	
		k > 1 or $k < -3$	A1 cao	
				(4)
	١			7
9.				
	(a)	(8-3-k=0) so $k=5$	B1	
				(1)
	(b)	2y = 3x + k	M1	
		$y = \frac{3}{2}x +$ and so $m = \frac{3}{2}$ o.e.	A1	
		2 2		(2)
				(2)
	(c)	Perpendicular gradient = $-\frac{2}{3}$	B1ft	
		Equation of line is: $y-4=-\frac{2}{3}(x-1)$	AA1 A 1 ££	
		Equation of fine is: $y-4=-\frac{1}{3}(x-1)$	M1A1ft	
		3y + 2x - 14 = 0 o.e.	A1	
				(4)
	(d)	$y = 0$, $\Rightarrow B(7,0)$ or $x = 7$ or $-\frac{c}{}$	M1A1ft	
	(-/	<i>a</i>		(2)
				(2)
	(-)	$(P^2 (7, 1)^2 (4, 0)^2)$	AA1	
	(e)	$AB^2 = (7-1)^2 + (4-0)^2$	M1	
		$AB = \sqrt{52}$ or $2\sqrt{13}$	A1	
				(2)
				11

10.	(i) correct shape (-ve cubic) Crossing at (-2, 0) Through the origin Crossing at (3,0)	B1 B1 B1 B1	
	(ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1	(6)
			(6)
(b	"2" solutions	B1ft	
	Since only "2" intersections	dB1ft	(2) 8
11.		1	

11. (a	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right)\frac{3}{2}x^2 - \frac{27}{2}x^{\frac{1}{2}} - 8x^{-2}$	M1A1A1A1
		(4)
(b	$x = 4 \implies y = \frac{1}{2} \times 64 - 9 \times 2^3 + \frac{8}{4} + 30$	M1
	$= 32 - 72 + 2 + 30 \qquad = -8 *$	A1cso (2)
(с	$x = 4 \implies y' = \frac{3}{2} \times 4^2 - \frac{27}{2} \times 2 - \frac{8}{16}$	M1
	$= 24 - 27 - \frac{1}{2} = -\frac{7}{2}$	A1
	Gradient of the normal = $-1 \div \frac{7}{2}$	M1
	Equation of normal: $y8 = \frac{2}{7}(x-4)$	M1A1ft
	7y - 2x + 64 = 0	A1
		(6) 12

(a)
$$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$$
 AG Correct method (no errors) for finding the mid-point of AB giving $(3, 6)$ B1*

(b) $(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or $\sqrt{(2-3)^2 + (11-6)^2}$ Applies distance formula in order to find the radius. Correct application of formula. $(x \pm 3)^2 + (y \pm 6)^2 = k$, k is a positive value. $(x-3)^2 + (y-6)^2 = 50$ (or $(\sqrt{50})^2$ or $(5\sqrt{2})^2$) k is a positive value. $(x-3)^2 + (y-6)^2 = 50$ (Not $(x-3)^2 + (y-6)^2 = 50$) (Not $(x-3)^2 +$

So,
$$V = 100x - 40x^2 + 4x^3$$
 $V = 100x - 40x^2 + 4x^3$
 $V = 100x - 40x^2 + 4x^3$

At least two of their expanded terms differentiated correctly.

 $100 - 80x + 12x^2$

A1 cao

(4)

(b) $100 - 80x + 12x^2 = 0$

Sets their $\frac{dV}{dx}$ from part (a) = 0

 $\{ \Rightarrow 4(3x^2 - 20x + 25) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \}$
 $\{ As \ 0 < x < 5 \} \ x = \frac{5}{3}$
 $x = \frac{5}{3}$ or $x = \text{awrt } 1.67$
 $x = \frac{5}{3}$, $V = 4(\frac{5}{3})(5 - \frac{5}{3})^2$

Substitute candidate's value of x where $0 < x < 5$ into a formula for V .

So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074...$

Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74.1

A1

When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24x$

Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.

M1

When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$
 $\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V$ is a maximum $\frac{d^2V}{dx^2} = -40$ and $\frac{d^2V}{d$