Paper collated from year	2008
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

1. Find the equation of the line passing through $A(-1,1)$ and $B(3,9)$.

MEI C1 June 2008 Q-12(i)
2. The curve with equation $y=x^{3}-7 x-6$ is sketched below.

Find the gradient of the curve $y=x^{3}-7 x-6$ at the point $\mathrm{B}(-1,0)$.
AQA C1 January 2008 Q-6 (iv)
3. The polynomial $p(x)$ is given by $p(x)=x^{3}+x^{2}-8 x-12$.
(a) Use the Factor Theorem to show that $x+2$ is a factor of $p(x)$.
(b) Express $p(x)$ as the product of linear factors.
(c) Sketch the graph of $y=x^{3}+x^{2}-8 x-12$, indicating the values of x where the curve touches or crosses the x-axis.

AQA C1 June 2008 Q-6
4. (a)

Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving
each term in its simplest form.
(b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal places.

Edexcel C2 January 2008 Q-3
5. Given that point A has the position vector $4 \mathbf{i}+7 \mathbf{j}$ and point B has the position vector $10 \mathbf{i}+$ $\mathrm{q} \mathbf{j}$, where q is a constant, given that $|\overline{A B}|=2 \sqrt{13}$, find the two possible values of q showing detailed reasoning in your working.

Unit Test 5: Vectors Q-5
6. The quadratic equation $(k+1) x^{2}+4 k x+9=0$ has real roots.
(a) Show that $4 k^{2}-9 k-9 \geq 0$.
(b) Hence find the possible values of k. Write your answer using set notation.

AQA C1 June 2008 Q-8
7. Differentiate $6 x^{2}+1$ from first principles with respect to x.
8. The diagram shows a triangle ABC . The length of AC is 18.7 cm , and the sizes of angles $B A C$ and $A B C$ are 72° and 50° respectively.

(a) Show that the length of $\mathrm{BC}=23.2 \mathrm{~cm}$, correct to the nearest 0.1 cm .
(b) Calculate the area of triangle ABC , giving your answer to the nearest cm^{2}.
9. A curve, drawn from the origin O , crosses the x -axis at the point $\mathrm{P}(4,0)$.

The normal to the curve at P meets the y -axis at the point Q , as shown in the diagram.

The curve, defined for $x \geq 0$, has equation

$$
\begin{equation*}
y=4 x^{\frac{1}{2}}-x^{\frac{3}{2}} \tag{3}
\end{equation*}
$$

(a) (i) Find $\frac{d y}{d x}$.
(ii) Find an equation of the normal to the curve at $\mathrm{P}(4,0)$
(b) (i) Find $\int 4 x^{\frac{1}{2}}-x^{\frac{3}{2}} d x$
(ii) Find the total area of the region bounded by the curve and the lines PQ and QO.

AQA C2 January 2008 Q-5
10. (a) Sketch the graph of $y=3^{x}$, stating the coordinates of the point where the graph crosses the y-axis
(b) Describe a single geometrical transformation that maps the graph of $y=3^{x}$: onto the graph of $y=3^{x+1}$
(c) (i) Using the substitution $Y=3^{x}$, show that the equation

$$
9^{x}-3^{x+1}+2=0
$$

can be written as

$$
\begin{equation*}
(Y-1)(Y-2)=0 \tag{2}
\end{equation*}
$$

(ii) Hence show that the equation $9^{x}-3^{x+1}+2=0$ has a solution $x=0$ and, by using logarithms, find the other solution, giving your answer to four decimal places.
11. Figure shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is $100 \mathrm{~m}^{3}$.
(a) Show that the area $A \mathrm{~m}^{2}$ of the sheet metal used to make the tank is given by

$$
A=\frac{300}{x}+2 x^{2} .
$$

(b) Use calculus to find the value of x for which A is stationary.
(c) Prove that this value of x gives a minimum value of A .

Edexcel C2 January 2008 Q-9
12. (a) Show that the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

can be written as

$$
5 \sin ^{2} \theta=3
$$

(b) Hence solve, for $0^{\circ} \leqslant \theta<360^{\circ}$, the equation
$3 \sin ^{2} \theta-2 \cos ^{2} \theta=1$,
giving your answers to 1 decimal place.
Edexcel C2 January 2008 Q-4
13. Use a counterexample to show that if n is an integer, $n^{2}+1$ is not necessarily prime.
14. The circle S has centre $C(8,13)$, and touches the x-axis, as shown in the diagram.

(a) Write down an equation for S , giving your answer in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{2}
\end{equation*}
$$

(b) The point P with coordinates $(3,1)$ lies on the circle.
(i) Find the gradient of the straight line passing through P and C .
(ii) Hence find an equation of the tangent to the circle S at the point P , giving your [4] answer in the form $a x+b y=c$, where a, b and c are integers.
(iii) The point Q also lies on the circle S , and the length of PQ is 10 . Calculate the shortest distance from C to the chord PQ .

$$
\text { AQA C1 June } 2008 \text { Q-7 }
$$

15. The percentage of the adult population visiting the cinema in Great Britain has tended to increase since the 1980s. The table shows the results of surveys in various years.

Year	$1986 / 87$	$1991 / 92$	$1996 / 97$	$1999 / 00$	$2000 / 01$	$2001 / 02$
Percentage of the adult population visiting the cinema	31	44	54	56	55	57
Source: Department of National Statistics. www statistics						

Source: Department of National Statistics, www.statistics.gov.uk
This growth may be modelled by an equation of the form

$$
P=a t^{b},
$$

where P is the percentage of the adult population visiting the cinema, t is the number of years after the year 1985/86 and a and b are constants to be determined.
(i) Show that, according to this model, the graph of $\log _{10} P$ against $\log _{10} t$ should be a straight line of gradient b. State, in terms of a, the intercept on the vertical axis.

Answer part (ii) of this question on the insert provided.

(ii) Complete the table of values on the insert, and plot $\log _{10} P$ against $\log _{10} t$. Draw by eye a line of best fit for the data.
(iii) Use your graph to find the equation for P in terms of t.

MEI C2 June 2008 Q-13

Insert for Q-15

Year	$1986 / 87$	$1991 / 92$	$1996 / 97$	$1999 / 00$	$2000 / 01$	$2001 / 02$
t	1	6	11	14	15	16
P	31	44	54	56	55	57
$\log _{10} t$			1.04			
$\log _{10} P$			1.73			

Mark scheme

1. $\operatorname{grad} \mathrm{AB}=\frac{9-1}{3--1}$ or 2
$y-9=2(x-3)$ or $y-1=2(x+1)$

M1	
M1	ft their m, or subst coords of A or B in $y=$ their $m x+c$
A1	or B3

$y=2 x+3$ o.e.
M1
2. $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-7$

When $x=-1$, gradient $=-4$

M1		One term correct
A1		All correct (no $+c$ etc)
A1	3	CSO

3. $\mathrm{p}(-2)=-8+4+16-12$

$$
=0 \Rightarrow(x+2) \text { is factor }
$$

M1 A1
$\mathrm{p}(x)=(x+2)\left(x^{2}-x-6\right)$
$\mathrm{p}(x)=(x+2)^{2}(x-3)$ or
NOT long division
$\mathrm{p}(-2)$ shown $=0$ and statement Correct quadratic factor or $(x-3)$ shown to be factor by Factor Theorem CSO; SC: B1 for $(x+2)\left(x^{* * *}\right)(x-3)$ by inspection or without working Cubic shape (one max and one min) Maximum at $(-2,0)$ and through $(3,0)-$ at least one of these values marked "correct" graph as shown (touching smoothly at $-2,3$ marked and minimum to right of y-axis)
4.
$\left(1+\frac{1}{2} x\right)^{10}=1+\underline{\binom{10}{1}\left(\frac{1}{2} x\right)+\binom{10}{2}\left(\frac{1}{2} x\right)^{2}+\binom{10}{3}\left(\frac{1}{2} x\right)^{3}}$
$=1+5 x ;+\frac{45}{4}$ (or 11.25$) x^{2}+15 x^{3}$ (coeffs need to be these, i.e, simplified)
[Allow A1A0, if totally correct with unsimplified, single fraction coefficients)

$$
\begin{aligned}
\left(1+\frac{1}{2} \times 0.01\right)^{10} & =1+5(0.01)+\left(\frac{45}{4} \text { or } 11.25\right)(0.01)^{2}+15(0.01)^{3} \\
& =1+0.05+0.001125+0.000015 \\
& =1.05114 \quad \text { cao }
\end{aligned}
$$

5. Correctly interprets the meaning of $|\overrightarrow{A B}|=2 \sqrt{13}$, by writing

M1

$(6)^{2}+(q-7)^{2}=(2 \sqrt{13})^{2}$ o.e.

Correct method to solve quadratic equation in q	M1

For example, $(q-7)^{2}=16$ or $q^{2}-14 q+33=0$

$q-7= \pm 4$ or $(q-11)(q-3)=0$ or $q=\frac{14 \pm \sqrt{14^{2}-4 \times 1 \times 33}}{2 \times 1}$	M1
$q=11$ or 3	A2

6. (a) $b^{2}-4 a c=16 k^{2}-36(k+1)$

Real roots: discriminant $\geqslant 0$
$\Rightarrow 16 k^{2}-36 k-36 \geqslant 0$
$\Rightarrow 4 k^{2}-9 k-9 \geqslant 0$
(b)
$(4 k+3)(k-3)$
critical points $\quad(k=)-\frac{3}{4}, 3$

$k \geqslant 3, \quad k \leqslant-\frac{3}{4}$

M1 B1		Condone one slip
A1	3	AG (watch signs)
M1		Or correct use of formula (unsimplified)
A1		Not in a form involving surds Values may be seen in inequalities etc
M1		Or sign diagram

7.

$$
\begin{aligned}
\lim _{h \rightarrow 0}\left(\frac{6(x+h)^{2}+1-\left(6 x^{2}+1\right)}{h}\right) & =\lim _{h \rightarrow 0}\left(\frac{12 x h+h^{2}}{h}\right) \\
& =\lim _{h \rightarrow 0}(12 x+h) \\
& =12 x
\end{aligned}
$$

(4)

Uses limit definition	M1
Expands brackets	M1A1
Correct derivative	
	A1

8. (a)

(a)	$\frac{B C}{\sin 72}=\frac{18.7}{\sin 50} \quad[=24.4 \ldots .]$
	$\begin{aligned} & B C=\frac{18.7 \sin 72}{\sin 50} \\ & (B C)=23.21(6 . .)\{=23.2 \text { to nearest } 0.1 \mathrm{~cm}\} \end{aligned}$
(b)	Angle $C=180^{\circ}-\left(50^{\circ}+72^{\circ}\right)=58^{\circ}$
	$\begin{aligned} & \text { Area of triangle }=0.5 \times 18.7 \times 23.2 . . \times \sin C \\ & \ldots \ldots=184 \mathrm{~cm}^{2} \end{aligned}$

M1
m1

A1

9. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=4 \times \frac{1}{2} x^{-\frac{1}{2}}-\frac{3}{2} x^{\frac{1}{2}}=2 x^{-\frac{1}{2}}-\frac{3}{2} x^{\frac{1}{2}}$

At $P(4,0), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{4}}-\frac{3}{2} \times 2$

$$
=1-3=-2
$$

Gradient of normal $=\frac{1}{2}$
Equation of normal is $y-0=m[x-4]$

$$
\begin{aligned}
& \begin{array}{l}
y-0=\frac{1}{2}(x-4) \Rightarrow 2 y=x-4 \\
\begin{aligned}
\int\left(4 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right) \mathrm{d} x & =4 \frac{x^{\frac{3}{2}}}{1.5}-\frac{x^{\frac{5}{2}}}{2.5}\{+c\}
\end{aligned} \\
=\frac{8}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}\{+c\}
\end{array} \\
& \text { Area under curve }=4 \frac{4^{\frac{3}{2}}}{1.5}-\frac{4^{\frac{5}{2}}}{2.5}-\{0\}
\end{aligned} \text { Total area }=\mathrm{F}(4)+\text { area triangle } O P Q \text {. }
$$

M1		A power decreased by 1 A1 for each correct term	
A1		3	Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=4$
M1		Use of or stating $m \times m^{\prime}=-1$ m numerical; can be awarded even if $m=-2$	
A1	3	ACF of the equation	

Use of the sine rule

Rearrangement

AG Need $>1 \mathrm{dp}$ if using cm eg 23.21 or 23.22 ; at least 1 dp if using mm .

Valid method to find either angle C (PI eg by $\sin C=0.848(04 .)$.$) or side A B$

OE eg $0.5 \times 18.7 \times A B \times \sin 72^{\circ}$
Accept 183.8 to 184.2
Condone missing/wrong units
10.

Translation;
$\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
$9^{x}=\left(3^{2}\right)^{x}=3^{2 x}=\left(3^{x}\right)^{2}=Y^{2}$;
$3^{x+1}=3^{x} \times 3^{1}=3 Y$
$9^{x}-3^{x+1}+2=0 \Rightarrow Y^{2}-3 Y+2=0$
$\Rightarrow(Y-1)(Y-2)=0$
$Y=1 \Rightarrow 3^{x}=1 \Rightarrow x=0$
$Y=2 \Rightarrow 3^{x}=2$
$\log _{10} 3^{x}=\log _{10} 2$
$x \log _{10} 3=\log _{10} 2$
$x=\frac{\lg 2}{\lg 3}=0.630929 \ldots=0.6309$ to 4 dp

B1

2

AG

AG (Accept direct substitution if convinced)

Takes logs of both, PI by 'correct' value(s) later. or $x=\log _{3} 2$ seen
Use of $\log 3^{x}=x \log 3$ or $\log _{3} 2=\frac{\lg 2}{\lg 3}$ OE (PI by $\log _{3} 2=0.630$ or 0.631 or better)

Must show that logarithms have been used otherwise $0 / 3$
11.
$($ Total area $)=3 x y+2 x^{2}$
(Vol:) $\quad x^{2} y=100$

$$
\left(y=\frac{100}{x^{2}}, x y=\frac{100}{x}\right)
$$

Deriving expression for area in terms of x only
(Substitution, or clear use of, y or $x y$ into expression for area)
$($ Area $=) \frac{300}{x}+2 x^{2}$
AG
$\frac{\mathrm{d} A}{\mathrm{~d} x}=-\frac{300}{x^{2}}+4 x$

Setting $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ and finding a value for correct power of x, for cand. M1

$$
\left[x^{3}=75\right]
$$

$$
x=4.2172 \quad \text { awrt } 4.22 \quad \text { (allow exact } \sqrt[3]{75} \text {) }
$$

$\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=\frac{600}{x^{3}}+4=$ positive \quad therefore minimum

Substituting found value of x into (a)
(Or finding y for found x and substituting both in $3 x y+2 x^{2}$)
$\left[y=\frac{100}{4.2172^{2}}=5.6228\right]$
Area $=106.707$ awrt 107
12. (a) $3 \sin ^{2} \theta-2 \cos ^{2} \theta=1$
$3 \sin ^{2} \theta-2\left(1-\sin ^{2} \theta\right)=1 \quad\left(\mathrm{M} 1:\right.$ Use of $\left.\sin ^{2} \theta+\cos ^{2} \theta=1\right)$
$3 \sin ^{2} \theta-2+2 \sin ^{2} \theta=1$

$$
5 \sin ^{2} \theta=3 \quad \text { cso } \quad \text { AG }
$$

(b) $\sin ^{2} \theta=\frac{3}{5}$, so $\sin \theta=(\pm) \sqrt{ } 0.6$

Attempt to solve both $\sin \theta=+.$. and $\sin \theta=-$ (may be implied by later work) M1

$$
\begin{gathered}
\theta=50.7685^{\circ} \quad \text { awrt } \theta=50.8^{\circ} \quad \text { (dependent on first M1 only) } \\
\theta\left(=180^{\circ}-50.7685_{\mathrm{c}} \circ \text {) ; }=129.23 \ldots \text { awrt } 129.2^{\circ}\right.
\end{gathered}
$$

[f.t. dependent on first M and 3rd M]

$$
\begin{aligned}
& \quad \sin \theta=-\sqrt{ } 0.6 \\
& \theta= 230.785^{\circ} \text { and } 309.23152^{\circ} \quad \text { awrt } 230.8^{\circ}, 309.2^{\circ} \text { (both) }
\end{aligned}
$$

13. Counter-example and shows it doesn't work e.g. $n=3$, then $n^{2}+1=10$ which is not prime

Counterexample \quad B1
Shows it doesn't work B1
14.

(a)	$\begin{aligned} &(x-8)^{2}+(y-13)^{2} \\ &=13^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Exactly this with + and squares Condone 169
(b)(i)	$\operatorname{grad} P C=\frac{12}{5}$	B1	1	Must simplify $\frac{-12}{-5}$
(ii)	$\operatorname{grad} \text { of tangent }=\frac{-1}{\operatorname{grad} P C}=-\frac{5}{12}$	B1 \checkmark		Condone $-\frac{1}{2.4}$ etc
	tangent has equation $y-1=-\frac{5}{12}(x-3)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		ft gradient but M0 if using grad $P C$ Correct - but not in required final form
	$5 x+12 y=27$ OE	A1	4	MUST have integer coefficients
(iii)	half chord $=5$	B1		Seen or stated
	$P=\begin{aligned} & d^{2}=(\text { their } r)^{2}-5^{2} \\ & (\text { provided } r>5) \end{aligned}$	M1		Pythagoras used correctly $d^{2}=13^{2}-5^{2}$
	Distance $=12$	A1	3	CSO

15.

$\checkmark \sim$	$\checkmark \sim$	

must be with correct equation condone omission of base

accept to 2 or more dp

M1 for y step / x-step
accept1.47-1.50 for intercept accept answers that round to 30 32 , their positive m

