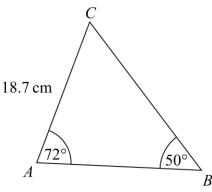
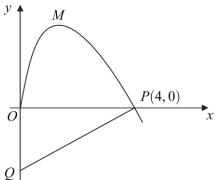
Paper collated from year	2008
Content	Pure Chapters 1-13
Marks	100
Time	2 hours


Find the equation of the line passing through A(-1, 1) and B (3, 9). MEI C1 June 2008 Q-12(i) 1.

[3]

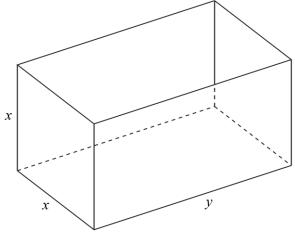

2. The curve with equation
$$y = x^3 - 7x - 6$$
 is sketched below. [3]
A A B C I January 2008 Q-6 (iv)
3. The polynomial $p(x)$ is given by $p(x) = x^3 + x^2 - 8x - 12$.
(a) Use the Factor Theorem to show that $x + 2$ is a factor of $p(x)$. [2]
(b) Express $p(x)$ as the product of linear factors. [21]
(c) Sketch the graph of $y = x^3 + x^2 - 8x - 12$, indicating the values of x where the curve touches or crosses the x -axis. AQA C I June 2008 Q-6
4. (a) Find the first 4 terms of the expansion of $\left(1 + \frac{x}{2}\right)^{10}$ in ascending powers of x , giving [4]
cach term in its simplest form. [3]
(b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal [3]
places. Edexcel C2 January 2008 Q-3
5. Given that point A has the position vector $4i + 7j$ and point B has the position vector $10i + (5)$
(a) Show that $4k^2 - 9k - 9 \ge 0$. [3]
(b) Hence find the possible values of k . Write your answer using set notation. AQA CI June 2008 Q-8
7. Differentiate $6x^2 + 1$ from first principles with respect to x . [4]

crashMATHS practice paper1 SetB Q-5

8. The diagram shows a triangle ABC. The length of AC is 18.7 cm, and the sizes of angles BAC and ABC are 72° and 50° respectively.

- (a) Show that the length of BC = 23.2 cm, correct to the nearest 0.1 cm. [3]
- (b) Calculate the area of triangle ABC, giving your answer to the nearest cm². [3] AQA C2 January 2008 Q-3
- 9. A curve, drawn from the origin O, crosses the x-axis at the point P(4, 0). The normal to the curve at P meets the y-axis at the point Q, as shown in the diagram.

The curve, defined for $x \ge 0$, has equation


$$y = 4x^{\frac{1}{2}} - x^{\frac{3}{2}}$$

Find $\frac{dy}{dx}$. [3] (a) (i) Find an equation of the normal to the curve at P(4, 0)(ii) [3] Find $\int 4x^{\frac{1}{2}} - x^{\frac{3}{2}} dx$ (b) (i) [3] Find the total area of the region bounded by the curve and the lines PQ and QO. [3] (ii) AQA C2 January 2008 Q-5 Sketch the graph of $y = 3^x$, stating the coordinates of the point where the graph 10. [2] (a) crosses the y-axis Describe a single geometrical transformation that maps the graph of $y = 3^x$: (b) [2] onto the graph of $y = 3^{x+1}$ Using the substitution $Y = 3^x$, show that the equation (c) (i) [2] $9^{x} - 3^{x+1} + 2 = 0$ can be written as (Y-1)(Y-2) = 0Hence show that the equation $9^x - 3^{x+1} + 2 = 0$ has a solution x = 0 and, (ii) [2]

by using logarithms, find the other solution, giving your answer to four decimal places.

AQA C2 January 2008 Q-8

11. Figure shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is 100 m^3 .

(a) Show that the area $A m^2$ of the sheet metal used to make the tank is given by [4]

$$A = \frac{300}{x} + 2x^2.$$

- (b) Use calculus to find the value of x for which A is stationary. [4]
- (c) Prove that this value of *x* gives a minimum value of A. Edexcel C2 January 2008 Q-9

12. (a) Show that the equation

$$3\,\sin^2\theta - 2\,\cos^2\theta = 1$$

can be written as

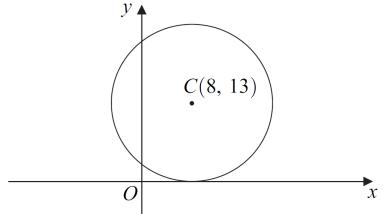
$$5\sin^2\theta=3$$

(b) Hence solve, for $0^{\circ} \leq \theta < 360^{\circ}$, the equation

$$3\sin^2\theta - 2\cos^2\theta = 1,$$

giving your answers to 1 decimal place.

Edexcel C2 January 2008 Q-4


13. Use a counterexample to show that if *n* is an integer, $n^2 + 1$ is not necessarily prime. [2] crashMATHS practice paper1 SetB Q-10

[2]

[3]

[2]

14. The circle S has centre C(8, 13), and touches the x-axis, as shown in the diagram.

(a) Write down an equation for S, giving your answer in the form $(x-a)^2 + (y-b)^2 = r^2$

- (b) The point P with coordinates (3, 1) lies on the circle.
 - (i) Find the gradient of the straight line passing through P and C. [1]
 - (ii) Hence find an equation of the tangent to the circle S at the point P, giving your [4] answer in the form ax + by = c, where a, b and c are integers.
 - (iii) The point Q also lies on the circle S, and the length of PQ is 10. Calculate the [3] shortest distance from C to the chord PQ.

```
AQA C1 June 2008 Q-7
```

15. The percentage of the adult population visiting the cinema in Great Britain has tended to increase since the 1980s. The table shows the results of surveys in various years.

Year	1986/87	1991/92	1996/97	1999/00	2000/01	2001/02
Percentage of the adult population visiting the cinema	31	44	54	56	55	57

Source: Department of National Statistics, www.statistics.gov.uk

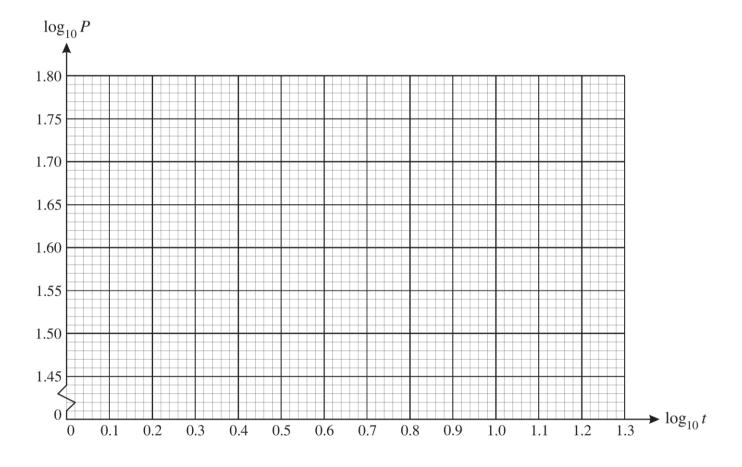
This growth may be modelled by an equation of the form

$$P = at^b$$
,

where P is the percentage of the adult population visiting the cinema, t is the number of years after the year 1985/86 and a and b are constants to be determined.

(i) Show that, according to this model, the graph of $\log_{10} P$ against $\log_{10} t$ should be a straight line of gradient *b*. State, in terms of *a*, the intercept on the vertical axis. [3]

Answer part (ii) of this question on the insert provided.


- (ii) Complete the table of values on the insert, and plot $\log_{10} P$ against $\log_{10} t$. Draw by eye a line of best fit for the data. [4]
- (iii) Use your graph to find the equation for *P* in terms of *t*.

MEI C2 June 2008 Q-13

[4]

Insert for Q-15

Year	1986/87	1991/92	1996/97	1999/00	2000/01	2001/02
t	1	6	11	14	15	16
Р	31	44	54	56	55	57
$\log_{10} t$			1.04			
$\log_{10} P$			1.73			

Mark scheme

1.	grad AB = $\frac{9-1}{31}$ or 2	M1			
	y - 9 = 2(x - 3) or $y - 1 = 2(x + 1)$) ^{M1}	1	eir <i>m,</i> or subst coords of A or B in heir <i>m x</i> + <i>c</i>	
	<i>y</i> = 2 <i>x</i> + 3 o.e.	A1	or B3		
2.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 7$	M1 A1		One term correct All correct (no $+ c$ etc)	
	When $x = -1$, gradient $= -4$	A1	3	CSO	
3.	p(-2) = -8 + 4 + 16 - 12	M1		NOT long division	
	$= 0 \Rightarrow (x+2)$ is factor	A1	2	p(-2) shown = 0 and statement	
	$p(x) = (x+2)(x^2 - x - 6)$	A1		Correct quadratic factor or $(x-3)$ shown to be factor by Factor Theorem	
	$p(x) = (x+2)^2(x-3)$ or (x+2)(x+2)(x-3)	A1	3	CSO; SC: B1 for $(x+2)(x^{***})(x-3)$ by inspection or without working	
	$\uparrow^{\mathcal{Y}}$	M1		Cubic shape (one max and one min)	
		A1		Maximum at $(-2,0)$ and through $(3,0)$ –	
	-2 3 x	A1	3	at least one of these values marked "correct" graph as shown (touching smoothly at -2 , 3 marked and minimum to right of <i>y</i> -axis)	
4.	$(1)^{10}$, $(10)(1)$, $(10)(1)$	$)^{2}$ (10	$(1)^{2}$	3	

$$\left(1 + \frac{1}{2}x\right)^{10} = 1 + \frac{\binom{10}{1}\binom{1}{2}x}{\binom{1}{2}} + \binom{10}{\binom{1}{2}\binom{1}{2}x}^2 + \binom{10}{3}\binom{1}{\frac{1}{2}x}^2$$

= 1 + 5x; + $\frac{45}{4}$ (or 11.25) x^2 + $15x^3$ (coeffs need to be these, i.e, simplified) [Allow A1A0, if totally correct with unsimplified, single fraction coefficients)

$$(1 + \frac{1}{2} \times 0.01)^{10} = 1 + 5(0.01) + (\frac{45}{4} or 11.25)(0.01)^2 + 15(0.01)^3$$

= 1 + 0.05 + 0.001125 + 0.000015
= 1.05114 cao

Correctly interprets the meaning of $\left \overrightarrow{AB} \right = 2\sqrt{13}$, by writing	M1
$(6)^{2} + (q-7)^{2} = (2\sqrt{13})^{2}$ o.e.	
Correct method to solve quadratic equation in q For example, $(q-7)^2 = 16$ or $q^2 - 14q + 33 = 0$	M1
$q-7 = \pm 4$ or $(q-11)(q-3) = 0$ or $q = \frac{14 \pm \sqrt{14^2 - 4 \times 1 \times 33}}{2 \times 1}$	M1
q = 11 or 3	A2

y
(0, 1)B1B1Shape (graph must clearly go below the
intersection pt.). Condone if x-axis is a
tangentTranslation;B1COnly intersection with y-axis at (0, 1)
stated/indicated ... (accept 1 on y-axis as
equivalent) 0
$$\begin{bmatrix} -1\\0 \end{bmatrix}$$

 $9^x = (3^2)^x = 3^{2x} = (3^x)^2 = Y^2$;
 $3^{x+1} = 3^x \times 3^1 = 3Y$ B1C $9^x = (3^2)^x = 3^{2x} = (3^x)^2 = Y^2$;
 $3^{x+1} = 20 \Rightarrow Y^2 - 3Y + 2 = 0$
 $\Rightarrow (Y-1)(Y-2) = 0$ B1A $Y = 1 \Rightarrow 3^x = 1 \Rightarrow x = 0$
 $Y = 2 \Rightarrow 3^x = 2$
 $\log_{10} 3^x = \log_{10} 2$ B1A $Y = 2 \Rightarrow 3^x = 2$
 $\log_{10} 3 = \log_{10} 2$ B1AG $x = \frac{\lg 2}{\lg 3} = 0.630929.... = 0.6309$ to 4dpA12 $x = \frac{\lg 2}{\lg 3} = 0.630929.... = 0.6309$ to 4dpA12

(Total area) = $3xy + 2x^2$ (Vol:) $x^2y = 100$ $(y = \frac{100}{x^2}, xy = \frac{100}{x})$ Deriving expression for area in terms of *x* only (Substitution, or clear use of, *y* or *xy* into expression for area) (Area =) $\frac{300}{x} + 2x^2$ AG $\frac{d4}{dx} = -\frac{300}{x^2} + 4x$ Setting $\frac{d4}{dx} = 0$ and finding a value for correct power of *x*, for cand. M1 [$x^3 = 75$] x = 4.2172 awrt 4.22 (allow exact $\sqrt[3]{75}$) $\frac{d^2 A}{dx^2} = \frac{600}{x^3} + 4 = \text{positive}$ therefore minimum Substituting found value of *x* into (a) (Or finding *y* for found *x* and substituting both in $3xy + 2x^2$)

$$[y = \frac{100}{4.2172^2} = 5.6228]$$

Area = 106.707 awrt 107

10.

11.

12.	(a)	$3\sin^2\theta - 2\cos^2\theta = 1$							
	()	$3\sin^2\theta - 2(1 - \sin^2\theta) = 1$ (M1: Use of $\sin^2\theta + \cos^2\theta = 1$)							
		$3\sin^2\theta - 2 + 2\sin^2\theta = 1$							
		$5 \sin^2 \theta = 3$ cso AG							
	(b)	$\sin^2\theta = \frac{3}{5}$, so $\sin\theta = (\pm)\sqrt{0.6}$							
		Attempt to solve both $\sin\theta = +$	⊦ and s	in θ = – (r	may be implied by later work) N	11			
		θ = 50.7685° awrt	$\theta = 50$).8° (0	dependent on first M1 only)			
		θ (= 180° - 50.7685	5 _c o);	= 129.2	23º awrt 129.2º				
		[f.t. dependent on first M ar	nd 3rd	M]					
		$\sin \theta = -\sqrt{0.6}$							
		θ = 230.785° and 309.2315	52°	awrt	230.8°, 309.2° (both)				
13.	Coun	ter-example and shows it doesn't wo	ork		Counterexample	B1			
	e.g. <i>n</i>	= 3, then $n^2 + 1 = 10$ which is not pr	ime		Shows it doesn't work	B1			
14.	(a)	$(x-8)^2 + (y-13)^2$	B1		Exactly this with $+$ and squares				
		=13 ²	B1	2	Condone 169				
	(b)(i)	grad $PC = \frac{12}{5}$	B1	1	Must simplify $\frac{-12}{-5}$				
	(ii)	grad of tangent $=\frac{-1}{\text{grad }PC} = -\frac{5}{12}$	B1√		Condone $-\frac{1}{2.4}$ etc				
		tangent has equation $y-1 = -\frac{5}{12}(x-3)$	M1 A1		ft gradient but M0 if using grad <i>PC</i> Correct – but not in required final for	rm			
		5x + 12y = 27 OE	A1	4	MUST have integer coefficients				
	(iii)	half chord $= 5$	B1		Seen or stated				
		$P = \begin{bmatrix} 13 \\ p \end{bmatrix} = \begin{bmatrix} d^2 = (\text{their } r)^2 - 5^2 \\ p \text{ (provided } r > 5) \end{bmatrix}$	M1		Pythagoras used correctly $d^2 = 13^2 - 13^$	-5 ²			
		Distance = 12	A1	3	CSO				
15.	i	$\log P = \log a + b \log t \text{www}$	1	<u> </u>					
		comparison with $y = mx + c$ intercept = $\log_{10} a$	1 1	must b condor	3				
	ii	log t 0 0.78 1.15 1.18	1	accent					
	"	1.20	1		to 2 or more dp				
		log <i>P</i> 1.49 1.64 1.75 1.74 1.76	1 1		4				
		plots f.t. ruled line of best fit		M1 for y step / x-step accept1.47 – 1.50 for intercept accept answers that round to 30 –					
	iii	gradient rounding to 0.22 or	2						
		0.23 a = 10 ^{1.49} s.o.i.	1 1						
		P = 31t ^m		32 , their positive m 4					
		allow the form P = $10^{0.22\log t}$							