Paper collated from year	2007
Content	Pure Chapters 1-13
Marks	100
Time	2 hours

1

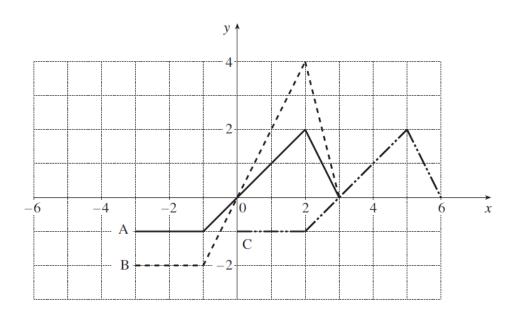


Fig. 3

Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is y = f(x).

State the equation of

2. (a) Express $\sqrt{108}$ in the form $a\sqrt{3}$, where a is an integer.

(1)

(b) Express $(2 - \sqrt{3})^2$ in the form $b + c\sqrt{3}$, where b and c are integers to be found.

(3)

3. Given that
$$f(x) = \frac{1}{x}, \quad x \neq 0,$$

(a) sketch the graph of y = f(x) + 3 and state the equations of the asymptotes.

(4)

(b) Find the coordinates of the point where y = f(x) + 3 crosses a coordinate axis.

(2)

4.

The curve C has equation y = f(x), $x \ne 0$, and the point P(2, 1) lies on C. Given that

$$f'(x) = 3x^2 - 6 - \frac{8}{x^2} ,$$

(a) find f(x).

(5)

(b) Find an equation for the tangent to C at the point P, giving your answer in the form y = mx + c, where m and c are integers.

(4)

5.

(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1-2x)^5$. Give each term in its simplest form.

(4)

(b) If x is small, so that x^2 and higher powers can be ignored, show that

$$(1+x)(1-2x)^5 \approx 1-9x$$
. (2)

6.

A diesel lorry is driven from Birmingham to Bury at a steady speed of v kilometres per hour. The total cost of the journey, £C, is given by

$$C = \frac{1400}{v} + \frac{2v}{7}$$
.

(a) Find the value of v for which C is a minimum.

(5)

(b) Find $\frac{d^2C}{dv^2}$ and hence verify that C is a minimum for this value of v.

(2)

(c) Calculate the minimum total cost of the journey.

(2)

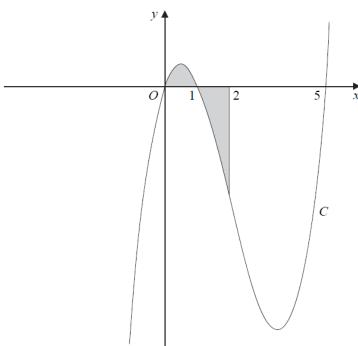


Figure 1 shows a sketch of part of the curve C with equation

$$y = x(x-1)(x-5).$$

Use calculus to find the total area of the finite region, shown shaded in Figure 1, that is between x = 0 and x = 2 and is bounded by C, the x-axis and the line x = 2.

(9)

8.

The table gives a firm's monthly profits for the first few months after the start of its business, rounded to the nearest £100.

Number of months after start-up (x)	1	2	3	4	5	6
Profit for this month (£y)	500	800	1200	1900	3000	4800

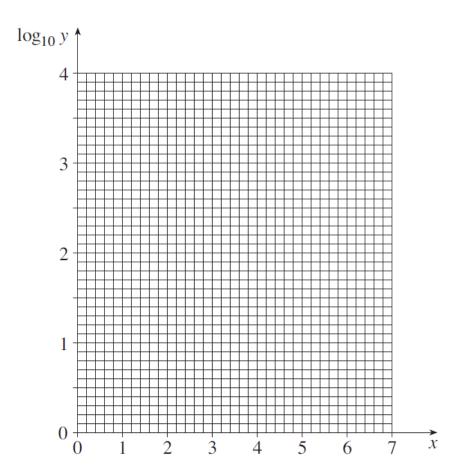
The firm's profits, £y, for the xth month after start-up are modelled by

$$y = k \times 10^{ax}$$

where a and k are constants.

- (i) Show that, according to this model, a graph of log₁₀ y against x gives a straight line of gradient a and intercept log₁₀ k.
- (ii) On the insert, complete the table and plot $\log_{10} y$ against x, drawing by eye a line of best fit. [3]
- (iii) Use your graph to find an equation for y in terms of x for this model. [3]
- (iv) For which month after start-up does this model predict profits of about £75 000? [3]
- (v) State one way in which this model is unrealistic. [1]

Number of months after start-up (x)	1	2	3	4	5	6
Profit for this month (£y)	500	800	1200	1900	3000	4800
$\log_{10} y$	2.70					



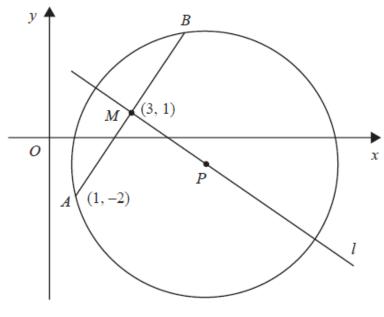


Figure 3

The points A and B lie on a circle with centre P, as shown in Figure 3. The point A has coordinates (1, -2) and the mid-point M of AB has coordinates (3, 1). The line I passes through the points M and P.

(a) Find an equation for l.

(4)

Given that the x-coordinate of P is 6,

- (b) use your answer to part (a) to show that the y-coordinate of P is -1, (1)
- (c) find an equation for the circle.

 (4)

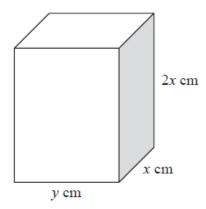


Figure 4

Figure 4 shows a solid brick in the shape of a cuboid measuring 2x cm by x cm by y cm.

The total surface area of the brick is 600 cm².

(a) Show that the volume, V cm³, of the brick is given by

$$V = 200x - \frac{4x^3}{3} \,. \tag{4}$$

Given that x can vary,

- (b) use calculus to find the maximum value of V, giving your answer to the nearest cm³. (5)
- (c) Justify that the value of V you have found is a maximum.(2)

11.

(i) Show that the equation $2\cos^2\theta + 7\sin\theta = 5$ may be written in the form

$$2\sin^2\theta - 7\sin\theta + 3 = 0. \tag{1}$$

(ii) By factorising this quadratic equation, solve the equation for values of θ between 0° and 180°.

12.

Use logarithms to solve the equation $3^{2x+1} = 5^{200}$, giving the value of x correct to 3 significant figures.

(a) Show that the equation

$$2\log_2(x+3) + \log_2 x - \log_2(4x+2) = 1$$

can be written in the form f(x) = 0.

[5]

(b) Explain why the equation

$$2\log_2(x+3) + \log_2 x - \log_2(4x+2) = 1$$

has only one real root and state the exact value of this root.

[2]

14.

(i) Express
$$\log_a x^4 + \log_a \left(\frac{1}{x}\right)$$
 as a multiple of $\log_a x$. [2]

(ii) Given that $\log_{10} b + \log_{10} c = 3$, find b in terms of c.

[2]

Mark scheme

Question 1

(i)
$$y = 2f(x)$$

(ii) y = f(x - 3)

M1 for
$$y = kf(x), k > 0$$

M1 for
$$y = kf(x), k > 0$$

M1 for $y = f(x + 3)$ or $y = f(x - k)$

4

Question 2

(a)
$$6\sqrt{3}$$

$$(a = 6)$$

(b) Expanding
$$(2 - \sqrt{3})^2$$
 to get 3 or 4 separate terms

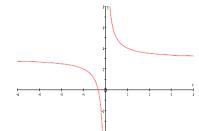
7,
$$-4\sqrt{3}$$

$$(b = 7, c = -4)$$

4

Question 3

(a)



Shape of f(x)

Moved up ↑

Asymptotes: y = 3

$$x = 0$$
 (Allow "y-axis")

($y \neq 3$ is B0, $x \neq 0$ is B0).

B1

M1

B1

(b)
$$\frac{1}{x} + 3 = 0$$

No variations accepted.

 $x = -\frac{1}{3}$ (or -0.33...) Decimal answer requires at least 2 d.p.

M1

A1

(2)

(5)

Question 4

(a)
$$3x^2 \rightarrow cx^3$$
 or $-6 \rightarrow cx$ or $-8x^{-2} \rightarrow cx^{-1}$

$$f(x) = \frac{3x^3}{3} - 6x - \frac{8x^{-1}}{-1} \qquad (+C) \qquad \left(x^3 - 6x + \frac{8}{x}\right)$$

$$\left(x^3 - 6x + \frac{8}{x}\right)$$

M1

Substitute x = 2 and y = 1 into a 'changed function' to form an equation in C.

$$1 = 8 - 12 + 4 + C$$
 $C = 1$

an equation in
$$C$$
. M1

(b)
$$3 \times 2^2 - 6 - \frac{8}{2^2}$$

Eqn. of tangent: y-1=4(x-2)

$$v = 4x - 7$$

Question 5

$$(1-2x)^{5} = 1+5 \times (-2x) + \frac{5 \times 4}{2!} (-2x)^{2} + \frac{5 \times 4 \times 3}{3!} (-2x)^{3} + \dots$$

$$= 1-10x + 40x^{2} - 80x^{3} + \dots$$

$$(1+x)(1-2x)^{5} = (1+x)(1-10x + \dots)$$

$$= 1+x-10x + \dots$$

$$\approx 1-9x \quad (*)$$

$$M1$$

$$A1 \quad (2)$$

$$(6)$$

Question 6

$\frac{dC}{dv} = -1400v^{-2} + \frac{2}{7}$	M1, A1
$-1400v^{-2} + \frac{2}{7} = 0$	M1
$v^2 = 4900$ $v = 70$	dM1 A1cso (5)
$\frac{d^2C}{dv^2} = 2800v^{-3}$	M1
$v = 70, \frac{d^2C}{dv^2} > 0$ { \Rightarrow minimum}	Alft
or $v = 70$, $\frac{d^2C}{dv^2} = 2800 \times 70^{-3}$ $\{=\frac{2}{245} = 0.00816\}$ $\{\Rightarrow \text{minimum}\}$	(2)
$v = 70, C = \frac{1400}{70} + \frac{2 \times 70}{7}$	M1
C = 40	A1 (2) (9)

Question 7

$$y = x(x^{2} - 6x + 5)$$

$$= x^{3} - 6x^{2} + 5x$$

$$\int (x^{3} - 6x^{2} + 5x) dx = \frac{x^{4}}{4} - \frac{6x^{3}}{3} + \frac{5x^{2}}{2}$$

$$M1, A1$$

$$\int \frac{x^{4}}{4} - 2x^{3} + \frac{5x^{2}}{2} \Big]_{0}^{1} = \left(\frac{1}{4} - 2 + \frac{5}{2}\right) - 0 = \frac{3}{4}$$

$$M1$$

$$\left[\frac{x^{4}}{4} - 2x^{3} + \frac{5x^{2}}{2}\right]_{1}^{2} = (4 - 16 + 10) - \frac{3}{4} = -\frac{11}{4}$$

$$\therefore \text{total area} = \frac{3}{4} + \frac{11}{4}$$

$$= \frac{7}{2} \quad \text{o.e.}$$

$$M1, A1(\text{both})$$

$$M1, A1(\text{both})$$

$$A1(\text{cso})$$

$$(9)$$

Question 8

i	$\log_{10} y = \log_{10} k + \log_{10} 10^{ax}$	M1		
	$\log_{10} y = ax + \log_{10} k$ compared	M1		2
	to y = mx+c			
ii	2.9(0), 3.08, 3.28, 3.48, 3.68	T1	condone one error	
	plots [tol 1 mm]	P1f.t		
	ruled line of best fit drawn	L1f.t.		3
iii	intercept = 2.5 approx	M1	or $y - 2.7 = m(x - 1)$	
	gradient = 0.2 approx	M1	, ,	
	$v = their 300x 10^{x(their 0.2)}$	M1f.t.		3
	or y = $10^{(\text{their } 2.5 + \text{their } 0.2x)}$			
iv	subst 75000 in any x/y eqn	M1		
	subst in a correct form of the	M1		
	relationship		B3 with evidence of valid working	3
	11,12 or 13	A1		
V	"Profits change" or any reason for	R1	too big, too soon	1
	this.			

Question 9

(a) Gradient of
$$AM$$
: $\frac{1-(-2)}{3-1} = \frac{3}{2}$ or $\frac{-3}{-2}$ B1

Gradient of I : $= -\frac{2}{3}$ M: use of $m_1 m_2 = -1$, or equiv. M1

 $y-1 = -\frac{2}{3}(x-3)$ or $\frac{y-1}{x-3} = -\frac{2}{3}$ $[3y = -2x+9]$ (Any equiv. form) M1 A1 (4)

(b)
$$x = 6$$
: $3y = -12 + 9 = -3$ $y = -1$ (or show that for $y = -1$, $x = 6$) (*) B1 (1) (A conclusion is not required).

(c)
$$(r^2 =) (6-1)^2 + (-1-(-2))^2$$
 M: Attempt r^2 or r

N.B. Simplification is <u>not</u> required to score M1 A1

$$(x \pm 6)^2 + (y \pm 1)^2 = k$$
, $k \ne 0$ (Value for k not needed, could be r^2 or r) M1
 $(x-6)^2 + (y+1)^2 = 26$ (or equiv.)
Allow $(\sqrt{26})^2$ or other exact equivalents for 26.

Allow $(\sqrt{26})^2$ or other exact equivalents for 26. (But... $(x-6)^2 + (y-1)^2 = 26$ scores M1 A0)

Question 10

(a)
$$4x^2 + 6xy = 600$$

 $V = 2x^2y = 2x^2\left(\frac{600 - 4x^2}{6x}\right)$ $V = 200x - \frac{4x^3}{3}$ (*) M1 Alcso (4)
(b) $\frac{dV}{dx} = 200 - 4x^2$ B1
Equate their $\frac{dV}{dx}$ to 0 and solve for x^2 or $x : x^2 = 50$ or $x = \sqrt{50}$ (7.07...) M1 Al
Evaluate $V: V = 200(\sqrt{50}) - \frac{4}{3}(50\sqrt{50}) = 943$ cm³ Allow awrt M1 Al (5)
(c) $\frac{d^2V}{dx^2} = -8x$ Negative, \therefore Maximum M1, Alft (2)

Question 11

(i) $2(1 - \sin^2 \theta) + 7 \sin \theta = 5$	1	for $\cos^2 \theta + \sin^2 \theta = 1$ o.e. used	
(ii) $(2 \sin \theta - 1)(\sin \theta - 3)$ $\sin \theta = \frac{1}{2}$ 30° and 150°	DM1 A1	1 st and 3 rd terms in expansion correct f.t. factors B1,B1 for each solution obtained by any valid method, ignore extra solns outside range, 30°, 150° plus extra soln(s) scores 1	5
Question 12			

Question 12

$\log 3^{(2x+1)} = \log 5^{200}$	M1	Introduce logarithms throughout
$(2x+1)\log 3 = 200\log 5$	M1	Drop power on at least one side
	A1	Obtain correct linear equation (now containing no powers)
$2x + 1 = \frac{200 \log 5}{\log 3}$	M1	Attempt solution of linear equation
x = 146	A1 5	Obtain $x = 146$, or better
$(2x+1) = \log_3 5^{200}$	M1	Intoduce log ₃ on right-hand side
$2x + 1 = 200\log_3 5$	M1	Drop power of 200
	A1	Obtain correct equation
	M1	Attempt solution of linear equation
	A1	Obtain $x = 146$, or better

Question 13

(a)	$\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1	State or imply that $2\log(x+3) = \log(x+3)^2$
		M1	Add or subtract two, or more, of their algebraic logs correctly
	$\log_2\left(\frac{(x+3)^2x}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with
			single term on each side)
	$\frac{(x+3)^2 x}{4x+2} = 2$	В1	Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
	$(x^2 + 6x + 9)x = 8x + 4$		
	$x^3 + 6x^2 + x - 4 = 0$	A1 5	Confirm given equation correctly
(b)	$x > 0$, otherwise $\log_2 x$ is undefined $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1* B1√dep*	State or imply that $\log x$ only defined for $x > 0$ State $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$ (or $x = 0.7$) only, following
		2	their single positive root in (i)(b)

Question 14

(i) 3 log _a x	2	M1 for 4 $\log_a x$ or $-\log_a x$; or $\log x^3$	
ii) $b = \frac{1000}{c}$	2	M1 for 1000 or 10 ³ seen	4