STATISTICS 1, S1 (4766) AS

Objectives

To enable students to build on and extend the data handling and sampling techniques they have learnt at GCSE.

To enable students to apply theoretical knowledge to practical situations using simple probability models.

To give students insight into the ideas and techniques underlying hypothesis testing.

Assessment

Examination (72 marks)
1 hour 30 minutes
The examination paper has two sections:
Section A: $\quad 5-7$ questions, each worth at most 8 marks. Section Total: 36 marks

Section B: 2 questions, each worth about 18 marks. Section Total: 36 marks

Assumed Knowledge

Candidates are expected to know the content for Intermediate Tier GCSE. In addition, they need to know the binomial expansion as covered in $C 1$.

Calculators

In the MEI Structured Mathematics specification, no calculator is allowed in the examination for C1. For all other units, including this one, a graphical calculator is allowed.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

The use of an asterisk * in a competence statement indicates assumed knowledge. These items will not be the focus of examination questions and are included for clarity and completeness. However, they may be used within questions on more advanced statistics.

STATISTICS 1, S1		
Specification	Ref.	Competence Statements

PROCESSES

This section is fundamental to all the statistics units in this specification (Statistics 1-4). In this unit, the ideas may be used in examination questions but will not be their main subject.

Statistical modelling.	S1p1	Be able to abstract from a real world situation to a statistical description (model).
	2	Be able to apply an appropriate analysis to a statistical model.
	3	Be able to interpret and communicate results.
	4	Appreciate that a model may need to be progressively refined.
Sampling.	5	* Understand the meanings of the terms population and sample.
	6	* Be aware of the concept of random sampling.
		DATA PRESENTATION
Classification and visual presentation of data.	S1D1	* Know how to classify data as categorical, discrete or continuous.
	2	* Understand the meaning of and be able to construct frequency tables for ungrouped data and grouped data.
	3	* Know how to display categorical data using a pie chart or a bar chart.
	4	Know how to display discrete data using a vertical line chart.
	5	Know how to display continuous data using a histogram for both unequal and equal class intervals.
	6	* Know how to display and interpret data on a stem and leaf diagram.
	7	* Know how to display and interpret data on a box and whisker plot.
	8	Know how to display and interpret a cumulative frequency distribution.
	9	Know how to classify frequency distributions showing skewness.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

STATISTICS 1, S1

Specification \quad Ref. \quad Competence Statements

DATA PRESENTATION (continued)		
Measures of central tendency and dispersion.	10	Know how to find median*, mean*, mode* and midrange.
	11	Know the usefulness of each of the above measures of central tendency.
	12	Know how to find range*, percentiles, quartiles* and interquartile range*.
	13	Know how to calculate and interpret mean squared deviation, root mean squared deviation, variance and standard deviation.
	14	Be able to use the statistical functions of a calculator to find mean, root mean square deviation and standard deviation.
	15	Know how the mean and standard deviation are affected by linear coding.

DATA PRESENTATION	
Notation for sample variance and sample standard deviation	
The notations s^{2} and s for sample variance and sample	In early work in statistics it is common practice to
standard deviation, respectively, are written into both	introduce these concepts with divisor n rather than
British Standards (BS3534-1, 1993) and International	$(n-1)$. However there is no recognised notation to
Standards (ISO 3534).	denote the quantities so derived.
The definitions are those given above in equations (\mathbf{t})	In this specification, in order to ensure unambiguity of
and (0). The calculations are carried out using divisor	meaning, these quantities will be referred to by the
$(n-1)$.	functional names of 'mean square deviation' and 'root
In this specification, the usage will be consistent with	mean square deviation'. The letters $m s d$ and $r m s d$ will
these definitions. Thus the meanings of 'sample	be used to denote their values.
variance', denoted by s^{2}, and 'sample standard	Students should be aware of the variations in notation
deviation', denoted by s,are uniquely defined, as	used by manufacturers on calculators and know what
calculated with divisor $(n-1)$.	the symbols on their particular models represent.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

STATISTICS 1, S1		
Specification	Ref.	Competence Statements

PROBABILITY		
Probability of events in a finite sample space.	S1u1	Know how to calculate the probability of one event.
	2	Understand the concept of a complementary event and know that the probability of an event may be found by finding that of its complementary event.
Probability of two or more events which are:	3	Know how to draw sample space diagrams to help calculate probabilities.
	4	Know how to calculate the expected frequency of an event given its probability.
(i) mutually exclusive;	5	Understand the concepts of mutually exclusive events and independent events.
	6	Know to add probabilities for mutually exclusive events.
	7	Know to multiply probabilities for independent events.
	8	Know how to use tree diagrams to assist in the calculation of probabilities.
(ii) not mutually exclusive.	9	Know how to calculate probabilities for two events which are not mutually exclusive.
Conditional probability.	10	Be able to use Venn diagrams to help calculations of probabilities for up to three events.

11 Know how to calculate conditional probabilities by formula, from tree diagrams or sample space diagrams

12 Know that $\mathrm{P}(B \mid A)=\mathrm{P}(B) \Leftrightarrow B$ and A are independent.

	DISCRETE RANDOM VARIABLES	
Probability distributions.	S1R1	Be able to use probability functions, given algebraically or in tables.
Calculation of probability, expectation (mean) and variance.	2	Be able to calculate the numerical probabilities for a simple distribution.
	3	Be able to calculate the expectation (mean), $\mathrm{E}(X)$, in simple cases and understand its meaning.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

STATISTICS 1, S1		
Specification	Ref.	Competence Statements

THE BINOMIAL DISTRIBUTION AND ITS USE IN HYPOTHESIS TESTING

Situations leading S1H1 Recognise situations which give rise to a binomial distribution. to a binomial distribution.

2 Be able to identify the binomial parameter p, the probability of success.

Calculations		
relating to binomial distribution.	3	Be able to calculate probabilities using the binomial distribution.
det	4	Know that ${ }^{n} \mathrm{C}_{r}$ is the number of ways of selecting r objects from n.

	5	Know that $n!$ is the number of ways of arranging n objects in line.
Knowledge of mean.	6	Understand and apply mean $=n p$.

Calculation of 7 Be able to calculate the expected frequencies of the various possible outcomes expected from a series of binomial trials.
frequencies.
Hypothesis testing 8 Understand the process of hypothesis testing and the associated vocabulary. for a binomial probability p.

9 Be able to identify Null and Alternative Hypotheses $\left(\mathrm{H}_{0}\right.$ and $\left.\mathrm{H}_{1}\right)$ when setting up a hypothesis test on a binomial probability model.
10 Be able to conduct hypothesis tests at various levels of significance.
11 Be able to identify the critical and acceptance regions.
12 Be able to draw a correct conclusion from the results of a hypothesis test on a binomial probability model.

13 Understand when to apply 1- tail and 2- tail tests.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

