MECHANICS 4, M4 (4764) A2

Objectives

To prepare students for more advanced courses at university by extending the use of calculus in mechanics.

Students will be expected to be technically competent in the use of calculus and to be able to apply it to a variety of situations.

Students are expected to apply the modelling principles detailed in Mechanics 1 in the context of this module.

Assessment

Examination (72 marks)
1 hour 30 minutes
The examination paper has two sections.
Section A: two compulsory questions, each worth about 12 marks. Section Total: 24 marks

Section B: two compulsory questions, each worth about 24 marks. Section Total: 48 marks

Unless otherwise specified the value of the acceleration due to gravity should be taken to be exactly $9.8 \mathrm{~ms}^{-2}$.

Assumed Knowledge

Candidates are expected to know the content of $C 1, C 2, C 3, C 4, F P 1$ and $F P 2$ and $M 1, M 2$ and $M 3$.

Calculators

In the MEI Structured Mathematics specification, no calculator is allowed in the examination for C1. For all other units, including this one, a graphical calculator is allowed.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

MECHANICS 4, M4		
Specification	Ref.	Competence Statements

VARIABLE FORCES

Application of M4d1 Be able to calculate measures involving variable forces, in given dynamic variable forces in 1 dimension.

2 Be able to formulate and solve differential equations using an appropriate expression for acceleration.

VARIABLE MASS		
The application of Newton's Second	M4k1	Understand and apply Newton's 2nd Law in the form $F=\frac{\mathrm{d}}{\mathrm{d} t}(m v)$.
involving variable mass.	2	Be able to set up and solve differential equations for situations involving variable mass.
STABILITY		
The stability of	M4d3	Know and apply the energy criteria for the stability of a system of particles.
equilibrium of a system of particles where the position of each is determined by a single parameter.	4	Appreciate that potential energy must be related to some fixed origin.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

MECHANICS 4, M4		
Specification	Ref.	Competence Statements

| | | ROTATION OF A RIGID BODY |
| :--- | ---: | :--- | :--- |
| Calculation of
 moment of inertia. | M4r1 | Understand the concept of moment of inertia as the analogue of mass in rotational
 motion. |
| Rotation of a rigid
 body about a fixed
 axis. | 2 | Be able to calculate moments of inertia of simple plane shapes and solids of
 uniform density from first principles. |
| | 4 | Know and use the perpendicular and parallel axes theorems. |
| The equation of
 motion. | 5 | Be able to calculate centres of mass and moments of inertia of bodies of variable
 density and of compound bodies. |
| Kinetic energy of
 rotation. | 6 | Be able to apply the principle of conservation of energy to rotational motion of a
 rigid body. |
| Angular
 momentum. | Be able to determine the period of small oscillations of a compound pendulum. | |
| Conservation of
 angular momentum. | 9 | Be able to calculate the angular momentum of a rigid body and understand its
 significance. |
| Understand the conditions under which angular momentum is conserved, and
 apply the principle of conservation of angular momentum. | | |

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

