FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2 (4756) A2

Objectives

To build on and extend students' knowledge of Pure Mathematics and associated techniques.

Assessment

Examination: (72 marks)
1 hour 30 minutes.
The examination paper has two sections.
Section A: All questions are compulsory. three questions each worth about 18 marks. One or two of the questions may be divided into independent parts on different topics in the specification. Section Total: 54 marks.

Section B: One question to be chosen from two both worth 18 marks. Section Total: 18 marks.

Assumed Knowledge

Candidates are expected to know the content for $C 1, C 2, C 3, C 4$ and $F P 1$.

Subject Criteria

Both this unit and $F P 1$ are required for Advanced Further Mathematics. The Units C1, C2, C3 and C4 are required for Advanced GCE Mathematics.

Calculators

In the MEI Structured Mathematics specification, no calculator is allowed in the examination for $C 1$. For all other units, including this one, a graphical calculator is allowed.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

SECTION A - All topics in this section are to be studied.

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2		
Specification	Ref.	Competence Statements

	POLAR COORDINATES	
Polar co-ordinates in two dimensions.	FP2P1	Understand the meaning of polar co-ordinates (r, θ) and be able to convert from polar to cartesian co-ordinates and vice-versa.

2 Be able to sketch curves with simple polar equations.
3 Be able to find the area enclosed by a polar curve.

	CALCULUS	
The inverse functions of sine, cosine and tangent.	FP2c1	Understand the definitions of inverse trigonometric functions.

Differentiation of 2 Be able to differentiate inverse trigonometric functions. $\arcsin x, \arccos x$ and $\arctan x$.
$\begin{array}{lll}\text { Use of } \\ \text { trigonometrical } & 3 & \text { Recognise integrals of functions of the form }\left(a^{2}-x^{2}\right)^{-1 / 2} \text { and }\left(a^{2}+x^{2}\right)^{-1} \text { and }\end{array}$ tronome substitutions in be able to integrate associated functions by using trigonometrical substitutions.
integration.
in

	SERIES	
Maclaurin series. Approximate evaluation of a function.	FP2s1	Be able to find the Maclaurin series of a function, including the general term in simple cases.
2	Appreciate that the series may converge only for a restricted set of values of x.	
	3	Identify and be able to use the Maclaurin series of standard functions.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2		
Specification	Ref.	Competence Statements

COMPLEX NUMBERS

Modulus- argument form.

FP2j1 Understand the polar (modulus-argument) form of a complex number, and the definition of modulus, argument.

2 Be able to multiply and divide complex number in polar form.

De Moivre's theorem and simple applications.	3	Understand de Moivre's theorem.

Expression of complex numbers
in the form
$z=r \mathrm{e}^{\mathrm{j} \theta}$ 。
The $n n^{\text {th }}$ roots of a complex number.

5 Understand the definition $\mathrm{e}^{\mathrm{j} \theta}=\cos \theta+\mathrm{j} \sin \theta$ and hence the form $z=r \mathrm{e}^{\mathrm{j} \theta}$.

6 Know that every non-zero complex number has $n n^{\text {th }}$ roots, and that in the Argand diagram these are the vertices of a regular n-gon.
7 Know that the distinct $n^{\text {th }}$ roots of $r \mathrm{e}^{\mathrm{j} \theta}$ are: $r^{\frac{1}{n}}\left[\cos \left(\frac{\theta+2 k \pi}{n}\right)+\mathrm{j} \sin \left(\frac{\theta+2 k \pi}{n}\right)\right]$ for $k=0,1, \ldots, n-1$.
8 Be able to explain why the sum of all the $n^{\text {th }}$ roots is zero.
Applications of 9 Appreciate the effect in the Argand diagram of multiplication by a complex complex numbers in Geometry. number.

[^0]Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2		
Specification	Ref.	Competence Statements
MATRICES		
Determinant and inverse of a 3×3 matrix.	FP2m1	Be able to find the determinant of any 3×3 matrix and the inverse of a nonsingular 3x3 matrix.
Eigenvalues and eigenvectors of 2×2 and 3×3 matrices.	2	Understand the meaning of eigenvalue and eigenvector, and be able to find these for 2×2 or 3×3 matrices whenever this is possible.
Diagonalisation and powers of 2×2 and 3×3 matrices	3	Be able to form the matrix of eigenvectors and use this to reduce a matrix to diagonal form.
	4	Be able to find powers of a 2×2 or 3×3 matrix.
Solution of equations.	5	Be able to solve a matrix equation or the equivalent simultaneous equations, and to interpret the solution geometrically.
The use of the Cayley-Hamilton Theorem.	6	Understand the term characteristic equation of a 2×2 or 3×3 matrix.
	7	Understand that every 2×2 or 3×3 matrix satisfies its own characteristic equation, and be able to use this.

SECTION B One topic from this section is required. Section B of the examination paper contains two questions, one on each option. A candidate will only receive credit for an answer to one of them.

SECTION B OPTION 1

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2		
Specification	Ref.	Competence Statements

	HYPERBOLIC FUNCTIONS	
Hyperbolic functions: definitions, graphs, differentiation and integration.	FP2a4	Understand the definitions of hyperbolic functions and be able to sketch their graphs.

5 Be able to differentiate and integrate hyperbolic functions.
Inverse hyperbolic
6 Understand and be able to use the definitions of the inverse hyperbolic functions. functions, including the logarithmic forms. Use in integration.

7 Be able to use the logarithmic forms of the inverse hyperbolic functions.

8 Be able to integrate $\left(x^{2}+a^{2}\right)^{-1 / 2}$ and $\left(x^{2}-a^{2}\right)^{-1 / 2}$ and related functions.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

SECTION B OPTION 2

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2		
Specification	Ref.	Competence Statements

INVESTIGATION OF CURVES

The assessment of this option will be based on the assumption that candidates have a suitable graphical calculator.

Candidates who do not have such a calculator are advised not to attempt this option.
In this option students develop skills associated with curves. They learn to look for and recognise important properties of curves, making appropriate use of graphical calculators. They are expected to be able to generalise their findings; at times this will require analytical skills.

Examination questions will use a variety of curves but candidates will not be expected to know their particular properties. Instead the questions will test candidates' ability to select and apply the skills to investigate them.

It is, however, anticipated that while studying this option, students will meet a wide selection of curves.

Curves.	FP2C1	Know vocabulary associated with curves.
Graphical Calculator.	2	Be able to use a suitable graphical calculator to draw curves.
Properties of Curves.	3	Be able to find, describe and generalise properties of curves.
	4	Be able to determine asymptotes.
	5	Be able to identify cusps and loops.
	6	Be able to find and work with equations of chords, tangents and normals.
Conics.	7	Know the names and shapes of conics.

8 Know the standard cartesian and parametric equations of conics.

Caution: This document is provided for your convenience and is not the full specification. To find that go back to the previous page and click on the connection to OCR.

[^0]: 10 Be able to represent complex roots of unity on an Argand diagram.
 11 Be able to apply complex numbers to geometrical problems.

