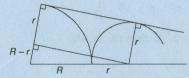


$$b = a + 2 \times \frac{a}{\sqrt{2}} = a(1 + \sqrt{2}).$$

Vol of solid = $b^3 - 8$ (vol of corner tetrahedron)

$$= b^3 - 8 \times \frac{1}{3} \left(\frac{a}{\sqrt{2}} \right)^3$$
.

22. **B** A congruent curve through (0,0) will have the equation $y = kx^2 (x^2 - a)$ where k > 0 and a > 0. The equation $y = x^4 - 2x^2 = x^2(x^2 - 2)$ has k = 1 and a = 2, so $v = x^4 - 2x^2 - 3$ is a possible equation for the given graph. Similarly, $y = 3x^4 - 2x^2 - 1$ is a possible equation.

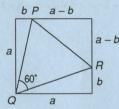


$$\frac{R-r}{R+r} = \sin 30^{\circ} \implies 2R - 2r = R+r$$
$$\implies r = \frac{1}{r}R.$$

(So radii and areas form G.P.'s.)

The areas of the circles are πR^2 , $\frac{1}{9}\pi R^2$, $\left(\frac{1}{9}\right)^2 \pi R^2$, Total area = $\pi R^2 \sum_{n=0}^{\infty} \left(\frac{1}{9}\right)^{n-1}$.

24. B



$$pQ = PH$$

$$\Rightarrow a^2 + b^2 = 2(a - b)^2 = 2a^2 - 4ab + 2b^2,$$

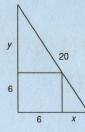
$$0 = a^2 - 4ab + b^2$$

$$\Rightarrow b = \frac{4a \pm \sqrt{16a^2 - 4a^2}}{2} = a(2 \pm \sqrt{3}),$$

$$b < a \Rightarrow b = a(2 - \sqrt{3}).$$

The area of the equilateral triangle = $\frac{1}{2} \times PQ^2 \sin 60^\circ = (a - b)^2 \sin 60^\circ$.

25. A



$$(x+6)^2 + (y+6)^2 = 20^2$$
 and $\frac{6}{x} = \frac{y}{6}$
 $\Rightarrow x^2 + y^2 + 12x + 12y + 72 = 400$ and $xy = 36$
 $\Rightarrow x^2 + 2xy + y^2 + 12(x+y) - 400 = 0$
 $\Rightarrow (x+y)^2 + 12(x+y) - 400 = 0$
 $\Rightarrow x + y = \frac{1}{2}(-12 + \sqrt{144 + 1600}) = -6 + 2\sqrt{109}$.
Perimeter = $32 + x + y = 26 + 2\sqrt{109}$.

UNITED KINGDOM SENIOR MATHEMATICAL CHALLENGE

FRIDAY 15th NOVEMBER 1996

SOLUTIONS

В	1	This solutions pamphlet outlines a solution for each problem on this
D	2	year's contest. The solutions are not the only possible solutions, though
A	3	we have tried to give the most straightforward approach.
D	4	Please share these solutions with
E	5	your students. Much of the benefit they could gain from grappling with
В	6	challenging mathematical problems gets lost without some kind of review,
В	7	or follow-up, during which students realise what they should have done,
C	8	and how many problems they could have solved.
A	9	

We hope that you and they agree that the first 15 or more problems could, in principle, have been solved by most participants: if not, please let us know.

B 12 E 13

10

11

ANSWER KEY Scoring

Correct 4 Blank 0

Wrong -1

14

15

16

17

18

19

20

21

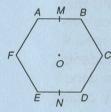
22

23

24

25

- 1. B Apply the rules for the multiplication and addition of odd and even numbers.
- 2. **D** $4 \times 3 + 2 + 1 =$ number of blocks.
- 3. A 2^2 , 4^2 , 6^2 , ..., 30^2 are the possible square numbers.
- D Apply the rules for the order of the operations multiplication, addition and subtraction.
- 5. **E** Gradient = $\frac{\text{increase in } y}{\text{corresponding increase in } x}$
- B By proportion, 2 x 10¹¹ cells are produced in 24 hours
 ⇒ 1.25 x 10¹⁰ cells are produced in 90 minutes.
- 7. **B** The next square up is $(\sqrt{n} + 1)^2$.
- 8. C



- $MN = 2MO = 2\sqrt{2^2 1^2} = 2\sqrt{3},$ $EM = \sqrt{1^2 + 12} = \sqrt{13}.$
- 9. A Profit 10% \Rightarrow cost price = £ $\frac{9999}{1.1}$ = £ $\frac{99990}{11}$, that is a profit of £909;

loss 10% \Rightarrow cost price = £ $\frac{9999}{0.9}$ = £ $\frac{99990}{9}$, that is a loss of £1111.

10. **D** If v_0 = original value and v_1 = new value, then

$$\frac{1}{v_0} = \frac{1}{f} - \frac{1}{u}$$
 and $\frac{1}{v_1} = \frac{2}{f} - \frac{2}{u} \implies \frac{1}{v_1} = \frac{2}{v_0}$.

11. D AP = PH = HQ = AQ as they are the hypotenuses of the congruent triangles APB, HPC, HQE, AQF, respectively;

AP // QM; ∠ QAP ≠ 90°.

12. **B** Linear scale factor = $1.03 \Rightarrow$ area scale factor = $1.03^2 = 1.0609$

13. E
$$xy = 2(x+y) \Rightarrow \frac{1}{2} = \frac{x+y}{xy} = \frac{1}{y} + \frac{1}{x}$$
.

- Section 1 distances increases more and more quickly. Section 2 distances increase steadily. Section 3 distances increase more and more slowly.
- 15. **B** 968880726456484032 x 875 = 968880726456484032 x 1000 \div 8 x 7.
- 16. **A** $EF = FC \Rightarrow \angle ECF = x^{\circ} \Rightarrow \angle CFA = 2x^{\circ}$, FABC is a cyclic quadrilateral $\Rightarrow \angle ABC = 180^{\circ} - 2x^{\circ}$.
- 17. C $8^2 = \left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} \implies 8^2 2 = x^2 + \frac{1}{x^2}$.

Squaring again, and remembering that $8 = 2^3$, leads to the answer.

- 18. E 9+8+7+6+5+4+3+2+1+0 = 45 and 198-45 = 153.
 Omitting a '+' increases the sum by 9 times the preceding digit (for example, 4+3=7, but 43 = 4 x 10 + 3 = 4 x 9 + 7).
 153÷9=17 so consider the partitions of 17:
 17=9+7+1 (the given example) = 9+6+2=9+5+3=8+6+3=8+5+3+1, these work but the other partitions of 17 fail.
- 19. A 8

Distance boat travels = (1.5 tan 30° + 8 + 1.5 tan 60°) km.

Time = 2 hours. Average speed = $\frac{\text{distance}}{\text{time}}$

20. E Consider the relevant partitions of six: Probability $(1 + 2 + 3) = 6\left(\frac{6}{16} \times \frac{8}{16} \times \frac{2}{16}\right)$,

Probability
$$(2+2+2) = \left(\frac{8}{16}\right)^2$$
.

Total probability = $\frac{9}{64} + \frac{1}{8} = \frac{17}{64}$