OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4761

Mechanics 1
Monday 22 MAY $2006 \quad$ Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME

 1 hour 30 minutes
INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{m} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $\mathrm{g}=9.8$.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)
1 A particle is thrown vertically upwards and returns to its point of projection after 6 seconds. Air resistance is negligible.

Calculate the speed of projection of the particle and also the maximum height it reaches.
2 Force \mathbf{F}_{1} is $\binom{-6}{13} \mathrm{~N}$ and force \mathbf{F}_{2} is $\binom{-3}{5} \mathrm{~N}$, where $\binom{1}{0}$ and $\binom{0}{1}$ are vectors east and north respectively.
(i) Calculate the magnitude of \mathbf{F}_{1}, correct to three significant figures.
(ii) Calculate the direction of the force $\mathbf{F}_{1}-\mathbf{F}_{2}$ as a bearing.

Force \mathbf{F}_{2} is the resultant of all the forces acting on an object of mass 5 kg .
(iii) Calculate the acceleration of the object and the change in its velocity after 10 seconds.

3 A train consists of an engine of mass 10000 kg pulling one truck of mass 4000 kg . The coupling between the engine and the truck is light and parallel to the track.

The train is accelerating at $0.25 \mathrm{~m} \mathrm{~s}^{-2}$ along a straight, level track.
(i) What is the resultant force on the train in the direction of its motion?

The driving force of the engine is 4000 N .
(ii) What is the resistance to the motion of the train?
(iii) If the tension in the coupling is 1150 N , what is the resistance to the motion of the truck? [2]

With the same overall resistance to motion, the train now climbs a uniform slope inclined at 3° to the horizontal with the same acceleration of $0.25 \mathrm{~m} \mathrm{~s}^{-2}$.
(iv) What extra driving force is being applied?

4 Fig. 4 shows the unit vectors \mathbf{i} and \mathbf{j} in the directions of the cartesian axes $\mathrm{O} x$ and $\mathrm{O} y$, respectively. O is the origin of the axes and of position vectors.

Fig. 4
The position vector of a particle is given by $\mathbf{r}=3 t \mathbf{i}+\left(18 t^{2}-1\right) \mathbf{j}$ for $t \geqslant 0$, where t is time.
(i) Show that the path of the particle cuts the x-axis just once.
(ii) Find an expression for the velocity of the particle at time t.

Deduce that the particle never travels in the \mathbf{j} direction.
(iii) Find the cartesian equation of the path of the particle, simplifying your answer.

5 You should neglect air resistance in this question.
A small stone is projected from ground level. The maximum height of the stone above horizontal ground is 22.5 m .
(i) Show that the vertical component of the initial velocity of the stone is $21 \mathrm{~m} \mathrm{~s}^{-1}$.

The speed of projection is $28 \mathrm{~m} \mathrm{~s}^{-1}$.
(ii) Find the angle of projection of the stone.
(iii) Find the horizontal range of the stone.

Section B (36 marks)
6 A toy car is travelling in a straight horizontal line.
One model of the motion for $0 \leqslant t \leqslant 8$, where t is the time in seconds, is shown in the velocity-time graph Fig. 6.

Fig. 6
(i) Calculate the distance travelled by the car from $t=0$ to $t=8$.
(ii) How much less time would the car have taken to travel this distance if it had maintained its initial speed throughout?
(iii) What is the acceleration of the car when $t=1$?

From $t=8$ to $t=14$, the car travels 58.5 m with a new constant acceleration, $a \mathrm{~m} \mathrm{~s}^{-2}$.
(iv) Find a.

A second model for the velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, of the toy car is

$$
v=12-10 t+\frac{9}{4} t^{2}-\frac{1}{8} t^{3}, \text { for } 0 \leqslant t \leqslant 8
$$

This model agrees with the values for v given in Fig. 6 for $t=0,2,4$ and 6 . [Note that you are not required to verify this.] Use this second model to answer the following questions.
(v) Calculate the acceleration of the car when $t=1$.
(vi) Initially the car is at A. Find an expression in terms of t for the displacement of the car from A after the first t seconds of its motion.

Hence find the displacement of the car from A when $t=8$.
(vii) Explain with a reason what this model predicts for the motion of the car between $t=2$ and $t=4$.

7 A box of weight 147 N is held by light strings AB and BC . As shown in Fig. 7.1, AB is inclined at α to the horizontal and is fixed at $\mathrm{A} ; \mathrm{BC}$ is held at C . The box is in equilibrium with BC horizontal and α such that $\sin \alpha=0.6$ and $\cos \alpha=0.8$.

Fig. 7.1
(i) Calculate the tension in string AB .
(ii) Show that the tension in string BC is 196 N .

As shown in Fig. 7.2, a box of weight 90 N is now attached at C and another light string CD is held at D so that the system is in equilibrium with BC still horizontal. CD is inclined at β to the horizontal.

Fig. 7.2
(iii) Explain why the tension in the string BC is still 196 N.
(iv) Draw a diagram showing the forces acting on the box at C .

Find the angle β and show that the tension in CD is 216 N , correct to three significant figures.

The string section CD is now taken over a smooth pulley and attached to a block of mass $M \mathrm{~kg}$ on a rough slope inclined at 40° to the horizontal. As shown in Fig. 7.3, the part of the string attached to the box is still at β to the horizontal and the part attached to the block is parallel to the slope. The system is in equilibrium with a frictional force of 20 N acting on the block up the slope.

Fig. 7.3
(v) Calculate the value of M.

Q 1

$$
\begin{aligned}
0 & =u-9.8 \times 3 \\
u & =29.4 \text { so } 29.4 \mathrm{~m} \mathrm{~s}^{-1} \\
s & =0.5 \times 9.8 \times 9=44.1 \text { so } 44.1 \mathrm{~m}
\end{aligned}
$$

M1 uvast leading to u with $t=3$ or $t=6$
A1 Signs consistent
M1 uvast leading to s with $t=3$ or $t=6$ or their u
F1 FT their u if used with $t=3$. Signs consistent.
Award for 44.1, 132.3 or 176.4 seen.
[Award maximum of 3 if one answer wrong]

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.
M1 Use of $\arctan \left(\pm \frac{8}{3}\right)$ or $\arctan \left(\pm \frac{3}{8}\right)\left(\pm 20.6^{\circ}\right.$ or $\pm 69.4^{\circ}$) or equivalent on their resultant

A1 cao. Do not accept -21°.

M1 Use of N2L with acen used in vector form
A1 Any form. Units not required. isw.
F1 10a seen. Units not required. Must be a vector. [SC1 for $a=\sqrt{3^{2}+5^{2}} / 5=1.17$]
so 150 N

Extra driving force is cpt of $m g$ down slope
$14000 \mathrm{~g} \sin 3^{\circ}$
$=14000 \times 9.8 \times 0.0523359 \ldots=7180.49 \ldots$
so 7180 N (3 s. f.)
or
$D-500-14000 g \sin 3=14000 \times 0.25$
$D=11180.49 \ldots$ so extra is $7180 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f}$.
mark

M1 Use of N2L. Allow $F=m g a$ and wrong mass. No extra forces.
A1

B1 FT F from (i). Condone negative answer.

M1 N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use of $F=m g a$. Allow sign errors.
A1 cao

M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.

A1
M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.
M1 N2L with all terms present with correct signs and mass.
No extras. FT 500 N. Accept their $500+150$ for
No extras. FT 500 N . Accept their $500+150$ for
resistance. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$.
A1 Must be the extra force.

M1 May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$

Q4
(i) either

Need \mathbf{j} cpt 0 so $18 t^{2}-1=0$
$\Rightarrow t^{2}=\frac{1}{18}$. Only one root as $t>0$
or
Establish sign change in \mathbf{j} cpt
Establish only one root
(ii) $\mathbf{v}=3 \mathbf{i}+36 t \mathbf{j}$

Need \mathbf{i} cpt 0 and this never happens
(iii) $x=3 t$ and $y=18 t^{2}-1$

Eliminate t to give
$y=18\left(\frac{x}{3}\right)^{2}-1$
so $y=2 x^{2}-1$

Q 5
(i) $0^{2}=V^{2}-2 \times 9.8 \times 22.5$
$V=21$ so $21 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $28 \sin \theta=21$
so $\theta=48.59037 \ldots$
(iii) Time to highest point is $\frac{21}{9.8}=\frac{15}{7}$

Distance is $2 \times \frac{15}{7} \times 28 \times \cos (\boldsymbol{t h e i r} \theta)$..
$79.3725 \ldots$ so 79.4 m (3 s. f.)
mark

M1 Need not solve
E1 Must establish only one of the two roots is valid

B1
B1

B1 Or equivalent (time of whole flight)

M1 Valid method for horizontal distance. Accept $1 / 2$ time.
Do not accept 28 used for horizontal speed or vertical speed when calculating time.
B1 Horizontal speed correct
A1 cao. Accept answers rounding to 79 or 80 .
[If angle with vertical found in (ii) allow up to full marks in (iii). If $\sin \leftrightarrow \cos$ allow up to B1 B1 M0 A1] [If $u^{2} \sin 2 \theta / g$ used then
M1* Correct formula used. FT their angle. M1 Dep on *. Correct subst. FT their angle. A2 cao]

Q 6
(i) $0.5 \times 2 \times 12+0.5 \times 4 \times 12$
so 36 m
mark

M1 Attempt at sum of areas or equivalent. No extra areas.
A1

B1 cao

M1 Attempt at acen for $0 \leq t \leq 2$
B1 must be - ve or equivalent
(vi)
$s=\int\left(12-10 t+\frac{9}{4} t^{2}-\frac{1}{8} t^{3}\right) \mathrm{d} t$
$=12 t-5 t^{2}+\frac{3}{4} t^{3}-\frac{1}{32} t^{4}+C$
$s=0$ when $t=0$ so $C=0$
$s(8)=32$
either
(vii)
$s(2)=9.5$ and $s(4)=8$

Displacement is negative
Car going backwards
or
Evaluate $v(t)$ where $2<t<4$ or appeal to shape of the graph

Velocity is negative
Car going backwards

M1 Differentiation

A1
A1 cao
M1 Use of u vast with 12 and 58.5
A1
ll

M1 Attempt to integrate
A1 At least one term correct
A1 All correct. Accept $+C$ omitted
A1* Clearly shown
A1 cao (award even if A1* is not given)

B1 Both calculated correctly from their s.
No further marks if their $s(2) \leq s(4)$
E1
E1 Do not need car going backwards throughout the interval.
B1 e.g. $v(3)=-1.125$
No further marks if their $v \geq 0$
E1
E1 Do not need car going backwards throughout the interval
[Award WW2 for 'car going backwards'; WW1 for velocity or displacement negative]

Q 7
(i) $T_{\mathrm{AB}} \sin \alpha=147$
so $T_{\mathrm{AB}}=\frac{147}{0.6}$
$=245$ so 245 N
(ii) $T_{\mathrm{BC}}=245 \cos \alpha$

$$
=245 \times 0.8=196
$$

(iii) Geometry of A, B and C and weight of B the same and these determine the tension
(iv)

either

Realise that 196 N and 90 N are horiz and vert forces where resultant has magnitude and line of action of the tension
$\tan \beta=90 / 196$
$\beta=24.6638$... so 24.7 (3 s. f.)
$T=\sqrt{196^{2}+90^{2}}$
$T=215.675 \ldots$ so 216 N (3 s. f.)
or
$\uparrow T \sin \beta-90=0$
$\rightarrow T \cos \beta-196=0$
Solving $\tan \beta=\frac{90}{196}=0.45918 \ldots$
$\beta=24.6638 \ldots$ so 24.7 (3 s. f.)
$T=215.675 \ldots$ so 216 N (3 s. f.)
(v) Tension on block is $215.675 . . \mathrm{N}$ (pulley is smooth and string is light)

$$
M \times 9.8 \times \sin 40=215.675 \ldots+20
$$

$M=37.4128 \ldots$ so 37.4 (3 s. f.)
mark

M1 Attempt at resolving. Accept $\sin \leftrightarrow \cos$. Must have T resolved and equated to 147 .

B1 Use of 0.6. Accept correct subst for angle in wrong expression.
A1 Only accept answers agreeing to 3 s. f.
[Lami: M1 pair of ratios attempted; B1 correct sub;A1] 3
M1 Attempt to resolve 245 and equate to T, or equiv
Accept $\sin \leftrightarrow \cos$
E1 Substitution of 0.8 clearly shown
[SC1 $245 \times 0.8=196$]
[Lami: M1 pair of ratios attempted; E1]
E1 Mention of two of: same weight: same direction AB : same direction BC
E1 Specific mention of same geometry \& weight or recognition of same force diagram

No extra forces.
B1 Correct orientation and arrows
B1 ' T ' 196 and 90 labelled. Accept 'tension' written out.

M1 Allow for only β or T attempted

B1 Use of $\arctan (196 / 90)$ or $\arctan (90 / 196)$ or equiv
A1
M1 Use of Pythagoras
E1

B1 Allow if $T=216$ assumed
B1 Allow if $T=216$ assumed
M1 Eliminating T, or...
A1 [If $T=216$ assumed, B 1 for $\beta ; \mathrm{B} 1$ for check in $2^{\text {nd }}$ E1 equation; E0]

B1 May be implied. Reasons not required.
M1 Equating their tension on the block unresolved ± 20 to weight component. If equation in any other direction, normal reaction must be present.
A1 Correct
A1 Accept answers rounding to 37 and 38

