

ADVANCED GCE MATHEMATICS (MEI)

4768

Statistics 3

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

None

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to
 indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

Coastal wildlife wardens are monitoring populations of herring gulls. Herring gulls usually lay 3 eggs per nest and the wardens wish to model the number of eggs per nest that hatch. They assume that the situation can be modelled by the binomial distribution B(3, p) where p is the probability that an egg hatches. A random sample of 80 nests each containing 3 eggs has been observed with the following results.

Number of eggs hatched	0	1	2	3
Number of nests	7	23	29	21

- (i) Initially it is assumed that the value of p is $\frac{1}{2}$. Test at the 5% level of significance whether it is reasonable to suppose that the model applies with $p = \frac{1}{2}$. [10]
- (ii) The model is refined by estimating p from the data. Find the mean of the observed data and hence an estimate of p. [2]
- (iii) Using the estimated value of p, the value of the test statistic X^2 turns out to be 2.3857. Is it reasonable to suppose, at the 5% level of significance, that this refined model applies? [3]
- (iv) Discuss the reasons for the different outcomes of the tests in parts (i) and (iii). [2]
- $\mathbf{2}$ (a) A continuous random variable, X, has probability density function

$$f(x) = \begin{cases} \frac{1}{72}(8x - x^2) & 2 \le x \le 8, \\ 0 & \text{otherwise.} \end{cases}$$

- (i) Find F(x), the cumulative distribution function of X.
- (ii) Sketch F(x).

[3]

- (iii) The median of *X* is *m*. Show that *m* satisfies the equation $m^3 12m^2 + 148 = 0$. Verify that $m \approx 4.42$.
- (b) The random variable in part (a) is thought to model the weights, in kilograms, of lambs at birth. The birth weights, in kilograms, of a random sample of 12 lambs, given in ascending order, are as follows.

3.16 3.62 3.80 3.90 4.02 4.72 5.14 6.36 6.50 6.58 6.68 6.78

Test at the 5% level of significance whether a median of 4.42 is consistent with these data. [10]

© OCR 2010 4768 Jan10

3 Cholesterol is a lipid (fat) which is manufactured by the liver from the fatty foods that we eat. It plays a vital part in allowing the body to function normally. However, when high levels of cholesterol are present in the blood there is a risk of arterial disease. Among the factors believed to assist with achieving and maintaining low cholesterol levels are weight loss and exercise.

A doctor wishes to test the effectiveness of exercise in lowering cholesterol levels. For a random sample of 12 of her patients, she measures their cholesterol levels before and after they have followed a programme of exercise. The measurements obtained are as follows.

Patient	A	В	С	D	Е	F	G	Н	I	J	K	L
Before												
After	5.8	4.0	5.2	5.7	6.0	5.0	5.8	4.2	7.3	5.2	6.4	4.1

(i) A *t* test is to be used in order to see if, on average, the exercise programme seems to be effective in lowering cholesterol levels. State the distributional assumption necessary for the test, and carry out the test using a 1% significance level. [11]

(ii) A second random sample of 12 patients gives a 95% confidence interval of (-0.5380, 1.4046) for the true mean reduction (before – after) in cholesterol level. Find the mean and standard deviation for this sample. How might the doctor interpret this interval in relation to the exercise programme?

- 4 The weights of a particular variety (A) of tomato are known to be Normally distributed with mean 80 grams and standard deviation 11 grams.
 - (i) Find the probability that a randomly chosen tomato of variety A weighs less than 90 grams. [3]

The weights of another variety (B) of tomato are known to be Normally distributed with mean 70 grams. These tomatoes are packed in sixes using packaging that weighs 15 grams.

- (ii) The probability that a randomly chosen pack of 6 tomatoes of variety B, including packaging, weighs less than 450 grams is 0.8463. Show that the standard deviation of the weight of single tomatoes of variety B is 6 grams, to the nearest gram. [5]
- (iii) Tomatoes of variety A are packed in fives using packaging that weighs 25 grams. Find the probability that the total weight of a randomly chosen pack of variety A is greater than the total weight of a randomly chosen pack of variety B.

 [5]
- (iv) A new variety (C) of tomato is introduced. The weights, c grams, of a random sample of 60 of these tomatoes are measured giving the following results.

$$\Sigma c = 3126.0$$
 $\Sigma c^2 = 164223.96$

Find a 95% confidence interval for the true mean weight of these tomatoes. [5]

© OCR 2010 4768 Jan10

4768 Statistics 3

1 (i)	H_0 : The number of eg	ggs hatched c	an be modelled	B1		
	by B(3, $\frac{1}{2}$) H ₁ : The number of eg		annot be	B1		
	modelled by B(3,	1/2)				
	With $p = \frac{1}{2}$			1	<u>'</u>	
	Probability	0.125	0.375	0.375	0.125	
	Exp'd frequency Obs'd frequency	10 7	30 23	30	10	
	Obs a frequency	/	23	29	21	
				M1	Probs \times 80 for expected frequencies.	
	_			A1	All correct.	
	$X^2 = 0.9 + 1.6333 + 0.0333 + 12.1$				Calculation of X^2 .	
	= 14.666(7)			A1	c.a.o.	
	Defente v ²			M1	Allow correct df (= cells – 1) from	
	Refer to χ_3^2 .			1111	wrongly grouped table and ft.	
					Otherwise, no ft if wrong.	
					$P(X^2 > 14.667) = 0.00212.$	
	Upper 5% point is 7.8	815.		A1	No ft from here if wrong.	
	Significant. Suggests it is reasona	ble to suppo	sa madal with n	A1 A1	ft only c's test statistic. ft only c's test statistic.	
	$= \frac{1}{2}$ does not apple		se moder with p	Al	it only c's test statistic.	[10]
	72 does not app	.,.				[10]
(ii)	$\bar{x} = \frac{144}{99} = 1.8$			D1	Cara	
	$\bar{x} = \frac{144}{80} = 1.8$ $\therefore \hat{p} = \frac{1.8}{3} = 0.6$			B1	C.a.o.	
	$\hat{p} = \frac{1.8}{3} = 0.6$			B1	Use of $E(X) = np$.	
	3				ft c's mean, provided $0 < \hat{p} < 1$.	[2]
(:::)	. 2			N/1	Allow df 1 loss than in most (i) No	
(iii)	Refer to χ_2^2 .			M1	Allow df 1 less than in part (i). No ft if wrong.	
					it it wrong.	
	Upper 5% point is 5.9	991.		A1	No ft if wrong.	
	Suggests it is reasona	able to suppos	se model with	A1	ft provided previous A mark	
	estimated p does app				awarded.	[3]
	- **					
(iv)	For example:			E2	Reward any two sensible points for	[2]
(11)	Estimating <i>p</i> leads to	an improved	l fit		E1 each.	[-]
	at the expense of the loss of 1 degree of freedom.					
	The model in (i) fails		ge			
	underestimate for $X =$	- J.			Total	[17]
					Total	[*/]

2 (a)	$f(x) = \frac{1}{72} (8x - x^2)$, $2 \le x \le 8$			
(i)	$F(x) = \int_{2}^{x} \frac{1}{72} (8t - t^{2}) dt$ $= \frac{1}{72} \left[4t^{2} - \frac{t^{3}}{3} \right]_{2}^{x}$ $= \frac{1}{72} \left(4x^{2} - \frac{x^{3}}{3} - 16 + \frac{8}{3} \right) = \frac{12x^{2} - x^{3} - 40}{216}$	M1 A1 A1	Correct integral with limits (which may be implied subsequently). Correctly integrated Limits used. Accept unsimplified form.	[3]
(ii)	1 + F(x) 0.5 + x 2 4 6 8 10	G1 G1 G1	Correct shape; nothing below $y = 0$; non-negative gradient. Labels at $(2, 0)$ and $(8, 1)$. Curve (horizontal lines) shown for $x < 2$ and $x > 8$.	[3]
(iii)	F(m) = $\frac{1}{2}$ $\therefore \frac{12m^2 - m^3 - 40}{216} = \frac{1}{2}$ $\therefore 12m^2 - m^3 - 40 = 108$ $\therefore m^3 - 12m^2 + 148 = 0$ Either F(4.42) = 0.5003(977) ≈ 0.5 Or $4.42^3 - 12 \times 4.42^2 + 148 = -0.0859(12) \approx 0$ $\therefore m \approx 4.42$	M1 A1	Use of definition of median. Allow use of c's F(x). Convincingly rearranged. Beware: answer given. Convincingly shown, e.g. 4.418 or better seen.	[3]

2 (b)	H_0 : $m = 4.42$	H ₁ : <i>m</i> ≠	± 4.42		B1	Both. Accept hypotheses in words.	
		where m is the population median				Adequate definition of <i>m</i> to include	
			1		"population".		
	Weights	-4.42	Rank of				
			diff				
	3.16	-1.26	7				
	3.62	-0.80	6				
	3.80	-0.62	4				
	3.90	-0.52	3				
	4.02	-0.40	2		M1	for subtracting 4.42.	
	4.72	0.30	1		171 1	for subtracting 4.42.	
	5.14	0.72	5		M1	for ranks.	
	6.36	1.94	8		Al	ft if ranks wrong.	
	6.50	2.08	9		711	it if failed wrong.	
	6.58	2.16	10				
	6.68	2.26	11				
	6.78	2.36	12				
	$W_{-} = 2 + 3 +$	4+6+7=	22		B1	$(W_{+} = 1 + 5 + 8 + 9 + 10 + 11 + 12$ = 56)	
		coxon single	sample tables	for	M1	No ft from here if wrong.	
	n = 12.						
	Lower $2\frac{1}{2}\%$ used).	point is 13 (or upper is 65	if 56	A 1	i.e. a 2-tail test. No ft from here if wrong.	
	Result is not significant.					ft only c's test statistic.	
	Evidence suggests that a median of 4.42 is				A1	ft only c's test statistic.	[10]
	consistent w	ith these data	a.				
						Total	[19]

3 (i)	Must assume			
3 (i)		D1		
	Normality of population	B1		
	• of <u>differences</u> .	B1		
	H_0 : $\mu_D = 0$	B1	Both. Accept alternatives e.g. μ_D <	
	$H_1: \mu_D > 0$		0 for H ₁ , or $\mu_B - \mu_A$ etc provided	
	.,2		adequately defined. Hypotheses in	
			words only must include	
			"population". Do NOT allow	
			" $\overline{X} =$ " or similar unless \overline{X} is	
			clearly and explicitly stated to be a	
			population mean.	
	Where μ_D is the (population) mean	B1	For adequate verbal definition.	
	reduction/difference in cholesterol level.		Allow absence of "population" if	
			correct notation μ is used.	
	MUST be PAIRED COMPARISON <i>t</i> test.			
	Differences (reductions) (before – after) are:		Allow "after – before" if consistent	
			with alternatives above.	
	-0.1 1.7 -1.2 1.1 1.4 0.5 0.9 2.2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	-0.1 2.0 0.7 0.3			
		B1	Do not allow $s_n = 0.9415 (s_n^2 =$	
	$\bar{x} = 0.7833$ $s_{n-1} = 0.9833(46)$ $(s_{n-1}^2 = 0.966969)$	Di	$\begin{array}{c} D0 & 100 & 210 & 3 & -0.9413 & 3 & -0$	
	0.7822 0		0.8804)	
	Test statistic is $\frac{0.7833 - 0}{0.9833}$	M1	Allow c's \overline{x} and/or s_{n-1} .	
			Allow alternative: $0 + (c's 2.718) \times$	
	√12		,	
			$\frac{0.9833}{\sqrt{12}}$ (= 0.7715) for subsequent	
			comparison with \overline{x} .	
			_	
			$(\text{Or } \overline{x} - (\text{c's } 2.718) \times \frac{0.9833}{\sqrt{12}}$	
			V 12	
			(=0.0118) for comparison with 0.)	
	= 2.7595.	A1	c.a.o. but ft from here in any case if	
			wrong.	
			Use of $0 - \overline{x}$ scores M1A0, but	
			ft.	
	Refer to t_{11} .	M1	No ft from here if wrong.	
			P(t > 2.7595) = 0.009286.	
	Single-tailed 1% point is 2.718.	A1	No ft from here if wrong.	
	Significant.	A1	ft only c's test statistic.	
	Seems mean cholesterol level has fallen.	A1	ft only c's test statistic.	[11]
	Seems mean enviesaeror tever has faiten.	111	it only c 3 test suitstic.	[11]
				
(ii)	CI is $\overline{x} \pm$	M1	Overall structure, seen or implied.	
	2.201	B1	From t_{11} , seen or implied.	
	_	ומ	1 rom i_{11} , seen of implied.	
	$\times \frac{s}{\sqrt{12}} = (-0.5380, 1.4046)$	A1	Fully correct pair of equations	
	$\sqrt{12}$		using the given interval, seen or	
			implied.	
	$\overline{x} = \frac{1}{2}(1.4046 - 0.5380) = 0.4333$	B1	*	
	/12	M1	Substitute \overline{x} and rearrange to find s.	1
	$s = (1.4046 - 0.4333) \times \frac{\sqrt{12}}{2.201} = 1.5287$	A1		
	2.2 0 1		c.a.o.	,
	Using this interval the doctor might conclude	E1	Accept any sensible comment or	
	that the mean cholesterol level did not seem to		interpretation of <u>this</u> interval.	[7]
	have been reduced.			
			Total	[18]
		<u> </u>		

4	$A \sim N(80, \ \sigma = 11)$		When a candidate's answers suggest	
	$B \sim N(70, \ \sigma = v)$		that (s)he appears to have neglected	
			to use the difference columns of the	
			Normal distribution tables penalise the first occurrence only.	
			the first occurrence only.	
(i)	$P(A < 90) = P\left(Z < \frac{90 - 80}{11} = 0.9091\right)$	M1	For standardising. Award once,	
	,	A 1	here or elsewhere.	
	= 0.8182	A1	c.a.o.	[3]
(ii)	$W_{-} = R_{-} + R_{-} + R_{-} + 15 \sim N(435)$	B1	Mean.	
(12)	$W_B = B_1 + B_2 + + B_6 + 15 \sim N(435,$ $\sigma^2 = v^2 + v^2 + + v^2 = 6v^2)$	B1	Expression for variance.	
	P(this < 450) = $P\left(Z < \frac{450 - 435}{v\sqrt{6}}\right) = 0.8463$	M1	Formulation of the problem.	
	$\therefore \frac{450 - 435}{v\sqrt{6}} = \Phi^{-1}(0.8463) = 1.021$	B1	Inverse Normal.	
	$\therefore v = \frac{15}{1.021 \times \sqrt{6}} = 5.9977 = 6 \text{ grams (nearest gram)}$	A1	Convincingly shown, beware A.G.	[5]
(iii)	$W_4 = A_1 + A_2 + + A_5 + 25 \sim N(425,$			
(111)	$\sigma^2 = 11^2 + 11^2 + + 11^2 = 605$			
	$D = W_A - W_B \sim N(-10,$	B1	Mean. Accept " $B - A$ ".	
	605 + 216 = 821			
		M1 A1	Variance. Accept sd (= 28.65).	
	Want $P(W_A > W_B) = P(W_A - W_B > 0)$	M1	Accept su (= 20.03).	
	$= P\left(Z > \frac{0 - (-10)}{\sqrt{821}} = 0.3490\right) = 1 - 0.6365 = 0.3635$	A1	c.a.o.	[5]
	√821) 		C.u. .o.	[2]
(iv)	3126.0			
(11)	$\overline{x} = \frac{3126.0}{60} = 52.1$,			
	$s = \sqrt{\frac{164223.96 - 60 \times 52.1^2}{59}} = 4.8$			
	·	B1	Both correct.	
	CI is given by	N 1 1		
	52.1 ± 1.96	M1 B1		
		D1		
	$\times \frac{4.8}{\sqrt{60}}$	M1		
	$= 52.1 \pm 1.2146 = (50.885(4), 53.314(6))$	A1	c.a.o. Must be expressed as an interval.	[5]
			Total	[18]