RECOGNISING ACHIEVEMENT

ADVANCED GCE

Statistics 2

TUESDAY 15 JANUARY 2008

Additional materials: Answer Booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

1 A biology student is carrying out an experiment to study the effect of a hormone on the growth of plant shoots. The student applies the hormone at various concentrations to a random sample of twelve shoots and measures the growth of each shoot. The data are illustrated on the scatter diagram below, together with the summary statistics for these data. The variables x and y, measured in suitable units, represent concentration and growth respectively.

$$
n=12, \Sigma x=30, \Sigma y=967.6, \Sigma x^{2}=90, \Sigma y^{2}=78926, \Sigma x y=2530.3
$$

(i) State which of the two variables x and y is the independent variable and which is the dependent variable. Briefly explain your answers.
(ii) Calculate the equation of the regression line of y on x.
(iii) Use the equation of the regression line to calculate estimates of shoot growth for concentrations of
(A) 1.2,
(B) 4.3 .

Comment on the reliability of each of these estimates.
(iv) Calculate the value of the residual for the data point where $x=3$ and $y=80$.
(v) In further experiments, the student finds that using concentration $x=6$ results in shoot growths of around $y=20$. In the light of all the available information, what can be said about the relationship between x and y ?

2 A large hotel has 90 bedrooms. Sometimes a guest makes a booking for a room, but then does not arrive. This is called a 'no-show'. On average 10% of bookings are no-shows. The hotel manager accepts up to 94 bookings before saying that the hotel is full. If at least 4 of these bookings are no-shows then there will be enough rooms for all of the guests. 94 bookings have been made for each night in August. You should assume that all bookings are independent.
(i) State the distribution of the number of no-shows on one night in August.
(ii) State the conditions under which the use of a Poisson distribution is appropriate as an approximation to a binomial distribution.
(iii) Use a Poisson approximating distribution to find the probability that, on one night in August,
(A) there are exactly 4 no-shows,
(B) there are enough rooms for all of the guests who do arrive.
(iv) Find the probability that, on all of the 31 nights in August, there are enough rooms for all of the guests who arrive.
(v) (A) In August there are $31 \times 94=2914$ bookings altogether. State the exact distribution of the total number of no-shows during August.
(B) Use a suitable approximating distribution to find the probability that there are at most 300 no-shows altogether during August.

3 In a large population, the diastolic blood pressure (DBP) of 5-year-old children is Normally distributed with mean 56 and standard deviation 6.5.
(i) Find the probability that the DBP of a randomly selected 5 -year-old child is between 52.5 and 57.5 .

The DBP of young adults is Normally distributed with mean 68 and standard deviation 10.
(ii) A 5-year-old child and a young adult are selected at random. Find the probability that the DBP of one of them is over 62 and the other is under 62.
(iii) Sketch both distributions on a single diagram.
(iv) For another age group, the DBP is Normally distributed with mean 82 . The DBP of 12% of people in this age group is below 62 . Find the standard deviation for this age group.

[Question 4 is printed overleaf.]

4 (a) A researcher believes that there may be some association between a student's sex and choice of certain subjects at A-level. A random sample of 250 A-level students is selected. The table below shows, for each sex, how many study either or both of the two subjects, Mathematics and English.

	Mathematics only	English only	Both	Neither	Row totals
Male	38	19	6	32	$\mathbf{9 5}$
Female	42	55	9	49	$\mathbf{1 5 5}$
Column totals	$\mathbf{8 0}$	$\mathbf{7 4}$	$\mathbf{1 5}$	$\mathbf{8 1}$	$\mathbf{2 5 0}$

Carry out a test at the 5% significance level to examine whether there is any association between a student's sex and choice of subjects. State carefully your null and alternative hypotheses. Your working should include a table showing the contributions of each cell to the test statistic. [12]
(b) Over a long period it has been determined that the mean score of students in a particular English module is 67.4 and the standard deviation is 8.9 . A new teaching method is introduced with the aim of improving the results. A random sample of 12 students taught by the new method is selected. Their mean score is found to be 68.3. Carry out a test at the 10% level to investigate whether the new method appears to have been successful. State carefully your null and alternative hypotheses. You should assume that the scores are Normally distributed and that the standard deviation is unchanged.

[^0]
Question 1

(i)	x is independent, y is dependent since the values of x are chosen by the student but the values of y are dependent on x	B1 E1 dep E1 dep	3
(ii)	$\begin{aligned} & \bar{x}=2.5, \bar{y}=80.63 \\ & b=\frac{S x y}{S x x}=\frac{2530.3-30 \times 967.6 / 12}{90-30^{2} / 12}=\frac{111.3}{15}=7.42 \\ & \text { OR } b=\frac{2530.3 / 12-2.50 \times 80.63}{90 / 12-2.50^{2}}=\frac{9.275}{1.25}=7.42 \end{aligned}$ Hence least squares regression line is: $\begin{aligned} & y-\bar{y}=b(x-\bar{x}) \\ \Rightarrow & y-80.63=7.42(x-2.5) \\ \Rightarrow & y=7.42 x+62.08 \end{aligned}$	B1 for \bar{x} and \bar{y} used (SOI) M1 for attempt at gradient (b) A1 for 7.42 cao M1 for equation of line A1 FT ($b>0$) for complete equation	5
(iii)	(A) For $x=1.2$, predicted growth $=7.42 \times 1.2+62.08=71.0$ (B) For $x=4.3$, predicted growth $=7.42 \times 4.3+62.08=94.0$ Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that $x=4.3$ is only just beyond the existing data. Comment relating to size of residuals near each predicted value (need not use word 'residual')	M1 for at least one prediction attempted. A1 for both answers (FT their equation if $b>0$) E1 (first comment) E1 (second comment)	4
(iv)	$\begin{aligned} & x=3 \Rightarrow \\ & \text { predicted } y=7.42 \times 3+62.08=84.3 \\ & \text { Residual }=80-84.3=-4.3 \end{aligned}$	M1 for prediction M1 for subtraction A1 FT ($b>0$)	3
(v)	This point is a long way from the regression line. The line may be valid for the range used in the experiment but then the relationship may break down for higher concentrations, or the relationship may be non linear.	E1 E1 for valid in range E1 for either 'may break down' or 'could be non linear' or other relevant comment	3
			18

Question 2

(i)	Binomial ($94,0.1$)	B1 for binomial B1 dep for parameters	2
(ii)	n is large and p is small	B1, B1 Allow appropriate numerical ranges	2
(iii)	$\lambda=94 \times 0.1=9.4$ (A) $\mathrm{P}(\mathrm{X}=4)=\mathrm{e}^{-9.4} \frac{9.4^{4}}{4!}=0.0269$ (3 s.f.) or from tables $=0.0429-0.0160=0.0269$ cao (B) Using tables: $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$ $=1-0.0160=0.9840 \text { cao }$	B1 for mean M1 for calculation or use of tables A1 M1 for attempt to find $P(X \geq 4)$ A1 cao	5
(iv)	$\begin{aligned} & \text { P(sufficient rooms throughout August) } \\ & =0.9840^{31}=0.6065 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 FT } \end{array}$	2
(v)	(A) $31 \times 94=2914$ Binomial $(2914,0.1)$ (B)Use Normal approx with $\begin{aligned} & \mu=n p=2914 \times 0.1=291.4 \\ & \sigma^{2}=n p q=2914 \times 0.1 \times 0.9=262.26 \\ & \mathrm{P}(X \leq 300.5)=\mathrm{P}\left(Z \leq \frac{300.5-291.4}{\sqrt{262.26}}\right) \\ & =\mathrm{P}(Z \leq 0.5619)=\Phi(0.5619)=0.7130 \end{aligned}$	B1 for binomial B1 dep, for parameters B1 B1 B1 for continuity corr. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	2 5
			18

Question 3

(i)	$\begin{aligned} & X \sim \mathrm{~N}\left(56,6.5^{2}\right) \\ & \mathrm{P}(52.5<X<57.5)=\mathrm{P}\left(\frac{52.5-56}{6.5}<Z<\frac{57.5-56}{6.5}\right) \\ & =\mathrm{P}(-0.538<Z<0.231) \\ & =\Phi(0.231)-(1-\Phi(0.538)) \\ & =0.5914-(1-0.7046) \\ & =0.5914-0.2954 \\ & =0.2960 \text { (4 s.f.) or } 0.296 \text { (to } 3 \text { s.f. }) \end{aligned}$	M1 for standardizing A1 for -0.538 and 0.231 M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	4
(ii)	$\begin{aligned} & \mathrm{P}(5-\text {-year-old }<62)=\mathrm{P}\left(Z<\frac{62-56}{6.5}\right) \\ & =\Phi(0.923)=0.8220 \\ & \mathrm{P}(\text { young adult }<62)=\mathrm{P}\left(Z<\frac{62-68}{10}\right) \\ & =\Phi(-0.6)=1-0.7257=0.2743 \\ & \mathrm{P}(\text { One over, one under }) \\ & =0.8220 \times 0.7257+0.1780 \times 0.2743 \\ & =0.645 \end{aligned}$	B1 for 0.8220 or 0.1780 B1 for 0.2743 or 0.7257 M1 for either product M1 for sum of both products A1 CAO	5
(iii)		G1 for shape G1 for means, shown explicitly or by scale G1 for lower max height in young adults G1 for greater variance in young adults	4
(iv)	$Y \sim N\left(82, \sigma^{2}\right)$ From tables $\Phi^{-1}(0.88)=1.175$ $\begin{aligned} & \frac{62-82}{\sigma}=-1.175 \\ & -20=-1.175 \sigma \\ & \sigma=17.0 \end{aligned}$	B1 for 1.175 seen M1 for equation in σ with z-value M1 for correct handling of LH tail A1 cao	4
			17

Question 4

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

