Friday 25 January 2013 - Afternoon
 AS GCE MATHEMATICS (MEI)

4766/01 Statistics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.
OCR supplied materials:
Duration: 1 hour 30 minutes

- Printed Answer Book 4766/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

- Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .
- The Printed Answer Book consists of 12 pages. The Question Paper consists of 4 pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

- Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (36 marks)

1 The stem and leaf diagram illustrates the heights in metres of 25 young oak trees.

3	4	6	7	8	9	9		
4	0	2	2	3	4	6	8	9
5	0	1	3	5	8			
6	2	4	5					
7	4	6						
8	1							

Key: 4 | 2 represents 4.2
(i) State the type of skewness of the distribution.
(ii) Use your calculator to find the mean and standard deviation of these data.
(iii) Determine whether there are any outliers.

2 The probability distribution of the random variable X is given by the formula

$$
\mathrm{P}(X=r)=k\left(r^{2}-1\right) \text { for } r=2,3,4,5
$$

(i) Show the probability distribution in a table, and find the value of k.
(ii) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

3 Each weekday Alan drives to work. On his journey, he goes over a level crossing. Sometimes he has to wait at the level crossing for a train to pass.

- W is the event that Alan has to wait at the level crossing.
- L is the event that Alan is late for work.

You are given that $\mathrm{P}(L \mid W)=0.4, \mathrm{P}(W)=0.07$ and $\mathrm{P}(L \cup W)=0.08$.
(i) Calculate $\mathrm{P}(L \cap W)$.
(ii) Draw a Venn diagram, showing the events L and W. Fill in the probability corresponding to each of the four regions of your diagram.
(iii) Determine whether the events L and W are independent, explaining your method clearly.

4 At a dog show, three out of eleven dogs are to be selected for a national competition.
(i) Find the number of possible selections.
(ii) Five of the eleven dogs are terriers. Assuming that the dogs are selected at random, find the probability that at least two of the three dogs selected for the national competition are terriers.

5 Malik is playing a game in which he has to throw a 6 on a fair six-sided die to start the game. Find the probability that
(i) Malik throws a 6 for the first time on his third attempt,
(ii) Malik needs at most ten attempts to throw a 6 .

Section B (36 marks)

6 The heights $x \mathrm{~cm}$ of 100 boys in Year 7 at a school are summarised in the table below.

Height	$125 \leqslant x \leqslant 140$	$140<x \leqslant 145$	$145<x \leqslant 150$	$150<x \leqslant 160$	$160<x \leqslant 170$
Frequency	25	29	24	18	4

(i) Estimate the number of boys who have heights of at least 155 cm .
(ii) Calculate an estimate of the median height of the 100 boys.
(iii) Draw a histogram to illustrate the data.

The histogram below shows the heights of 100 girls in Year 7 at the same school.

(iv) How many more girls than boys had heights exceeding 160 cm ?
(v) Calculate an estimate of the mean height of the 100 girls.

7 A coffee shop provides free internet access for its customers. It is known that the probability that a randomly selected customer is accessing the internet is 0.35 , independently of all other customers.
(i) 10 customers are selected at random.
(A) Find the probability that exactly 5 of them are accessing the internet.
(B) Find the probability that at least 5 of them are accessing the internet.
(C) Find the expected number of these customers who are accessing the internet.

Another coffee shop also provides free internet access. It is suspected that the probability that a randomly selected customer at this coffee shop is accessing the internet may be different from 0.35 . A random sample of 20 customers at this coffee shop is selected. Of these, 10 are accessing the internet.
(ii) Carry out a hypothesis test at the 5% significance level to investigate whether the probability for this coffee shop is different from 0.35 . Give a reason for your choice of alternative hypothesis.
(iii) To get a more reliable result, a much larger random sample of 200 customers is selected over a period of time, and another hypothesis test is carried out. You are given that 90 of the 200 customers were accessing the internet. You are also given that, if X has the binomial distribution with parameters $n=200$ and $p=0.35$, then $\mathrm{P}(X \geqslant 90)=0.0022$. Using the same hypotheses and significance level which you used in part (ii), complete this test.

$O C R^{\text {易 }}$

RECOGNISING ACHIEVEMENT

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

6 (iii)

A

Question		Answer	Marks		Guidance
2	(ii)	$\mathrm{E}(X)=(2 \times 0.06)+(3 \times 0.16)+(4 \times 0.30)+(5 \times 0.48)=4.2$ or $21 / 5$ $\begin{aligned} & \mathrm{E}\left(X^{2}\right)=(4 \times 0.06)+(9 \times 0.16)+(16 \times 0.30)+(25 \times 0.48)=18.48 \\ & \operatorname{Var}(X)=18.48-4.2^{2} \\ & =0.84=21 / 25 \end{aligned}$	M1 A1 M1 M1 A1 [5]	For $\Sigma r p$ (at least 3 terms correct Provided 4 reasonable probabilities seen. cao For $\Sigma r^{2} p$ (at least 3 terms correct) dep for - their $\mathrm{E}(X)^{2}$ FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$ (and of course $\mathrm{E}\left(X^{2}\right)$ is correct)	If probs wrong but sum $=1$ allow full marks here. If sum $\neq 1$ allow max M1A0M1 M0A0 (provided all probabilities between 0 and 1) Or ito k NB $\mathrm{E}(X)=210 k, \mathrm{E}\left(X^{2}\right)=924 k$ gets M1A0M1M0A0. $\mathrm{E}(X)=210 k, \operatorname{Var}(X)=924 k-(210 k)^{2}$ gets M1A0M1M1A0. Use of $\mathrm{E}(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-2.2)^{2},(-1.2)^{2}$, $(-0.2)^{2}, 0.8^{2}$, (if $\mathrm{E}(X)$ wrong FT their $\mathrm{E}(X))$ (all 4 correct for M1), then M1 for $\Sigma p(x-\mu)^{2}$ (at least 3 terms correct with their probabilities) Division by 4 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 4. Unsupported correct answers get 5 marks
3	(i)	$P(L \cap W)=P(L \mid W) \times P(W)=0.4 \times 0.07=0.028$	M1 A1 [2]	For $P(L \mid W) \times P(W)$ cao	

Question		Answer	Marks		Guidance
3	(ii)		B1 B1 B1 [3]	For two labelled intersecting circles For at least 2 correct probabilities. For remaining probabilities	FT their 0.028 provided <0.038
3	(iii)	$P(L \cap W)=0.028, P(L) \times P(W)=0.038 \times 0.07=0.00266$ Not equal so not independent	A1 E1* dep on M1 [3]	For correct use of $P(L) \times P(W)$ If $\mathrm{P}(L)$ wrong, max M1A0E0. No marks if $\mathrm{P}(W)$ wrong For 0.00266 Allow 'they are dependent' Do not award E1 if $\mathrm{P}(L \cap W)$ wrong	Or EG $\mathrm{P}(L \mid W)=0.4, \mathrm{P}(L)=0.038$ Not equal so not independent M1 is for comparing with some attempt at numbers $\mathrm{P}(L \mid W)$ with $\mathrm{P}(L), \mathrm{A} 1$ for 0.038 If $\mathrm{P}(L)$ wrong, max M1A0E0
4	(i)	$\begin{aligned} & \binom{11}{3} \\ & =165 \end{aligned}$	M1 A1 [2]	Seen Cao	

Question		Answer	Marks		Guidance
4	(ii)	$\frac{\binom{5}{2} \times\binom{ 6}{1}}{\binom{11}{3}}+\frac{\binom{5}{3} \times\binom{ 6}{0}}{\binom{11}{3}}=\frac{60}{165}+\frac{10}{165}=\frac{70}{165}=\frac{14}{33}=0.424$ Alternative $\begin{aligned} 1 & -\mathrm{P}(1 \text { or } 0)=1-3 \times \frac{5}{11} \times \frac{6}{10} \times \frac{5}{9}-\frac{6}{11} \times \frac{5}{10} \times \frac{4}{9} \\ & =1-\frac{5}{11}-\frac{4}{33}=\frac{14}{33} \end{aligned}$ M1 for $1-\mathrm{P}(1$ or 0$)$, M1 for first product, M1 for $\times 3$, M1 for second product, A1	M1 M1 M1 M1 A1 [5]	For intention to add correct two fractional terms For numerator of first term For numerator of sec term Do not penalise omission of $\binom{6}{0}$ For correct denominator cao	Or For attempt at correct two terms For prod of 3 correct fractions $=4 / 33$ For whole expression ie $3 \times \frac{5}{11} \times \frac{4}{10} \times \frac{6}{9}\left(=\frac{4}{11}\right)(=3 \times 0.1212 \ldots)$ For attempt at $\frac{5}{11} \times \frac{4}{10} \times \frac{3}{9}\left(=\frac{2}{33}\right)$ cao Use of binomial can get max first M1
5	(i)	$\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}=\frac{25}{216}(=0.116)$	M1 M1 A1 [3]	For $5 / 6$ (or $1-1 / 6$) seen For whole product cao	If extra term or whole number factor present give M1M0A0 Allow 0.12 with working
5	(ii)	$1-\left(\frac{5}{6}\right)^{10}=1-0.1615=0.8385$	M1 A1 [2]	For (5/6) ${ }^{10}$ (without extra terms) cao	Allow 0.838 or 0.839 without working and 0.84 with working. For addition $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=10)$ give M1A1 for 0.84 or better, otherwise M0A0

Question		Answer	Marks	Guidance	
6	(i)	$4+1 / 2$ of $18=4+9=13$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For $1 / 2$ of 18 cao	13/100 gets M1A0
6	(ii)	$\begin{aligned} & (\text { Median })=50.5^{\text {th }} \text { value } \\ & \text { Est }=140+\left(\frac{25.5}{29}\right) \times 5 \text { or }=140+\left(\frac{50.5-25}{54-25}\right) \times 5 \\ & =144.4 \end{aligned}$	M1 M1 A1 [3]	For 50.5 seen For attempt to find this value	SC 2 for use of $50^{\text {th }}$ value leading to Est $=140+(25 / 29 \times 5)=144.3$ (SC1 if over-specified) $\text { or Est }=145-\left(\frac{3.5}{29}\right) \times 5=144.4$ NB no marks for mean $=144.35$ NB Watch for over-specification

Question			Answer	Marks		Guidance
7	(i)	(A)	$\begin{aligned} & X \sim \mathrm{~B}(10,0.35) \\ & \mathrm{P}(5 \text { accessing internet })=\binom{10}{5} \times 0.35^{5} \times 0.65^{5} \\ & =0.1536 \end{aligned}$ OR from tables $=0.9051-0.7515=0.1536$	M1 M1 A1 OR M2 A1 [3]	or $0.35^{5} \times 0.65^{5}$ For $\binom{10}{5} \times p^{5} \times q^{5}$ cao For 0.9051-0.7515 cao	With $p+\boldsymbol{q}=\mathbf{1}$ Also for 252×0.0006094 Allow 0.15 or better NB 0.153 gets A0 See tables at the website http://www.mei.org.uk/files/pdf/formu la book mf2.pdf
7	(i)	(B)	$\begin{aligned} & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4) \\ & =1-0.7515 \\ & =0.2485 \end{aligned}$	M1 A1 [2]	For 0.7515 cao	Accept 0.25 or better - allow 0.248 or 0.249 Calculation of individual probabilities gets B 2 if fully correct 0.25 or better, otherwise B0.
7	(i)	(C)	$\begin{aligned} & \mathrm{E}(X)=n p=10 \times 0.35 \\ & =3.5 \end{aligned}$	M1 A1 [2]	For 10×0.35 cao	If any indication of rounding to 3 or 4 allow M1A0

Question		Answer	Marks	Guidance	
7	(ii)	Let $X \sim \mathrm{~B}(20,0.35)$ Let $p=$ probability of a customer using the internet (for population)	B1	For definition of p in context	Minimum needed for B 1 is $\mathrm{p}=$ probability of using internet. Allow $\mathrm{p}=\mathrm{P}$ (using internet) Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_{0} as long as it is a clear definition ' $p=$ the probability of using internet', Do NOT allow ' $p=$ the probability of using internet is different'
		$\mathrm{H}_{0}: p=0.35$	B1	For H_{0}	Allow $\mathrm{p}=35 \%$, allow only p or θ or π or ρ. However allow any single symbol if defined (including x) Allow $\mathrm{H}_{0}=p=0.35$, Allow H_{0} : $p={ }^{7} / 20$ or $p={ }^{35} / 100$ Allow NH and AH in place of H_{0} and H_{1} Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)=0.35$ Do not allow H_{0} : $=0.35$, $=35 \%$, $\mathrm{P}(0.35), \mathrm{p}(x)=0.35, x=0.35$ (unless x correctly defined as a probability) Do not allow H_{0} and H_{1} reversed For hypotheses given in words allow Maximum B0B1B1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.35 oe Thus eg $\mathrm{H}_{0}: \mathrm{p}($ using internet $)=0.35$, $\mathrm{H}_{1}: \mathrm{p}$ (using internet) $\neq 0.35$ gets B0B1B1

