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Section A (36 marks)

1  The equation f(x) = 0, where f(x) is a continuous function, is known to have a single root in the interval
[0.4, 1.8].

(i) Suppose the root is to be found using the bisection method. State the best possible estimate of
the root at the start of the process. State also the maximum possible error associated with that

estimate.

Determine how many iterations of the bisection process would be required to reduce the maximum
possible error to less than 0.05. [4]

(ii) Given now that f(0.4) =—0.2 and f(1.8) = 0.5, find an estimate of the root using the false position
method. [31]

2 The function g(x) has the values shown in the table.

X 1.80 2.00 2.20

o(x) | 266 |285 302

(i) Taking the data to be exact, use the central difference formula to estimate g'(2). [2]

(ii) Suppose instead that the x values are exact but the values of g(x) are rounded to 2 decimal places.
Find an appropriate range of estimates of g'(2). [3]

(iii) Now suppose that all the values in the table have been rounded to 2 decimal places. Find the
appropriate range of estimates of g'(2) in this case. [3]

3 The function Q(x) is known to be quadratic and it has the values shown in the table.

X -1 1 5
Qx) | -4 -12 20
(i) Write down the estimate of Q(0) obtained by linear interpolation. [1]
(ii) Use Lagrange’s method to write down an expression for Q(x). [You are not required to simplify
this expression. | [5]
(iii) Find the exact value of Q(0). 2]
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Show that the equation x = 1 — x* has a root in the interval [0.7, 0.8]. [2]

Show, by considering the derivative of 1 —x*, that the iteration x ,, = 1 —x *, with a starting value

in the interval [0.7, 0.8], will diverge. (4]

Find the absolute error and the relative error when X = 3.162 is used as an approximation to

x=10. 3]

Find the relative error if X* is used as an approximation to x*. [3]

State, in terms of k, the approximate relative error if X* is used as an approximation to x*. [1]
Section B (36 marks)

2.8
6  The integral / = L V1+x? dx is to be determined numerically. You should give all your answers to

7 decimal places unless instructed otherwise.

®

(i)

(iii)

© OCR 2011

Find mid-point rule and trapezium rule estimates of /, taking # = 0.8.

Use these two estimates to find a second trapezium rule estimate and a Simpson’s rule estimate

of 1. 8]
Find the mid-point rule estimate with 4 = 0.4, and hence obtain a second Simpson’s rule estimate
of L. [31]

You are now given that the mid-point rule estimate of /7 with # = 0.2 is 3.0914298, correct to
7 decimal places.

Find a third Simpson’s rule estimate. Show by considering ratios of differences that Simpson’s
rule is of order A*.

Give the value of / to the accuracy that appears justified. (7]

[Question 7 is printed overleaf.]
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The function f(x) has the exact values shown in the table.

@

(ii)

(iii)

(iv)

X 1 3 5

fx) | 4 2 10

Use Newton’s forward difference interpolation formula to find the quadratic function that fits the
data. (There is no need to simplify your answer.) [6]

Hence estimate the values of f(2) and f(6). State, with a reason, which of these estimates is likely
to be more accurate. 3]

Now suppose that f(7) = 11. Find the cubic function that fits all the data. Use this cubic to estimate
f(2) and f(6). [7]

Comment on (4) the absolute changes and (B) the relative changes in the estimates of f(2) and f(6)
from part (ii) to part (iii). [2]
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Mark Scheme

June 2011

1(i) Best estimate: 1.1 Maximum possible error: 0.7 [B1B1]
Bisecting mpe: 0.7 — 0.35 — 0.175 — 0.0875 — 0.04375 so 4 iterations [M1A1]
(i) False position: estimate is (0.4 x 0.5 - 1.8 x (-0.2) / (0.5 — (-0.2)) BoD for 0.8 alone [M1A1]
=0.8 [A1]
[TOTAL 7]
2(i)(3.02 - 2.66) / (2.20 — 1.80) = 0.9 [M1A1]
(ii) max: (3.025 - 2.655) / (2.20 — 1.80) = 0.925 [M1A1]
min: (3.015—-2.665) / (2.20 — 1.80) = 0.875 [A1]
(i) max: (3.025 - 2.655) / (2.195 - 1.805) = 0.94872 [M1] either denominator [M1A1]
min: (3.015 - 2.665) / (2.205 — 1.795) = 0.85366 correct. Max [2] if 3 dp [A1]
[TOTAL 8]
3(i) Linear interpolation: Q(0) = -8 write down or any method [B1]
(ii) Lagrange:  Q(x) = (-4)(x=1)(x=5)/ (-1 =1)(-1-5) + Lagrange form [M1]
=12)x+ 1) (x=5)/(1+1)(1-5)+ three terms [DM1]
20x+ 1)(x=1)/(5+1)(5-1) terms [A1,1,1]
(iii) Hence by substitution Q(0) = -10 cao [M1A1]
[TOTAL 8]
A(i) X 1-x*
0.7 < 0.7599
0.8 > 0.5904 (hence root) [M1A1]
(i) Derivative of 1 —x*is —4x° [M1]
X abs(-4x%)
0.7 1372 >1 [M1] for grad anywhere
0.8 2048 >1 (so for all [0.7, 0.8] abs gradient or abs RHS > 1) in interval [M1A1E1]
[TOTAL 6]
5(i) X X abserr rel err do not insist on sign
3.162278  3.162-0.00028  —0.0000878 but do require consistency [M1A1A1]
between parts (i) and (ii)
(ii) x* X' (abserr rel err
100 99.96488 _003512)  —0.0003512 allow multiplying answer in (i) by 4 [M1A1A1]
(iii) Relative error will be approximately k x (—)0.0000878 [B1]
[TOTAL 7]
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6(i) X f(x)
2 3 M1 = 3.0801558 Lose AL, 2, 3,4
2.43.850195 T1 = 3.1163298 if6,5,4,3dp
2.84.790825 T2 = 3.0982428 (=(M1+T1)/2)

S1 = 3.0922138 (=(2M1+T1)/3)

(i) X f(x)

June 2011

[M1A1]
[M1A1]
[M1A1]
[M1A1]
[subtotal 8]

2.23.412917 M2 = 3.0891620 [M1A1]
2.64.309988 S2 = 3.0921890 (=(2M2+T2)/3) [B1]
or ..889 [subtotal 3]
(iii) M4 = 3.0914298
T4 = 3.0937024 [B1]
S4 = 3.0921873 [B1]
S1 = 3.0922138 diffs ratio of
S2 = 3.0921890-2.5E-05 diffs
S4 = 3.0921873-1.6E-06 0.0648518 approx 1/16 so fourth order [M1A1E1]
(FT their precision)
Consider rate of convergence of S: conclude | = 3.09219 (or 3.092187 if using extrapolation) [E1A1]
[B2] for 3.09219 alone [subtotal 7]
[TOTAL 18]
7(i) X f(x) Af(x) N*(x)
1 4
3 -2 -6
5 10 12 18 [M1A1]
f(x) =4 + (=6)(x — 1)/ 2 + 18(x — 1)(x — 3) / (2* x 2! [M1A1A1A1]
[subtotal 6]
@iy f(2)=  —-1.25likely to be more accurate (interpolation)
f(6) =  22.75than this (extrapolation) [AL1ALEL]
[subtotal 3]
(iii) X f(x) Af(x) N*(x) N%(x)
1 4
3 -2 —6
5 10 12 18
7 11 1 -11 -29 «— extend table [M1A1]
new f(x) = old f(x) + (=29)(x — 1)(x — 3)(x — 5) / (2° x 3!) FT incorrect old f(x) here [M1A1]
f(2) =-1.25+(-1.8125) = -3.0625 [M1] for substituting [M1A1]
f(6) = 22.75 + (-9.0625) = 13.6875 cao for each [A1] [A1]
[subtotal 7]
(iv) Absolute change greater in f(6), relative change greater in f(2) Must have all 4 values correct [E1EL]
[E1], [E1] for intelligent comments on absolute, relative changes [subtotal 2]
[TOTAL 18]




Examiners’ Reports — June 2011

4776/01: Numerical Methods
(Written Examination)

General Comments

Most candidates found this a straightforward paper, and there were many high marks.
Candidates showed a good grasp of the basic ideas of numerical mathematics, but as in
previous years the standard of presentation of work was frequently not good. The point
has to be made yet again that numerical mathematics is systematic and algorithmic.
Setting down work in a logical order, frequently in tabular form, makes it easier to see
whether a solution is correct — easier, that is, for both the candidate and the marker.
Jumbles of unidentified numbers scattered across a page are unlikely to receive credit.

Comments on Individual Questions

1 Solution of an equation

In part (i), the idea of halving the maximum possible error at each iteration was well
understood, but many candidates counted the starting position of the bisection method

as an iteration. In part (ii), false position was usually done correctly.

2 Numerical differentiation

Parts (i) and (ii) were generally done well, but part (iii) defeated most candidates. The
idea in part (iii) is to combine the largest possible numerator with the smallest possible

denominator, and vice versa.

3 Lagrange’s interpolation formula

This was a straightforward question, but quite a number of candidates were not able to
apply linear interpolation in part (i). In part (ii) there were the usual confusions between

x values and function values. The question said, quite clearly, that no algebraic
simplification was required; some candidates chose to simplify anyway.

4 Fixed point iteration

Locating the root in part (i) was very easy, but the majority of candidates were unable
to use the magnitude of the derivative in a region surrounding the root to show that the

iteration will diverge.

5 Absolute and relative errors
The numerical work in parts (i) and (ii) was done well by almost all. In part (iii),

candidates were expected to know that when a number with a small relative error is
raised to a power k the relative error will be increased (approximately) by a factor of k.

This part was not done well.

6 Numerical integration

The numerical work in first two parts was done well by the vast majority of candidates.
Part (iii) was more challenging. Not all candidates appeared to know how to recognise
fourth order convergence. Some knew what to look for but arithmetical errors prevented
them finding it. The value of / was often given to fewer decimal places than the work
warranted. It is not correct to look for the number of figures of agreement in the two
best Simpson’s rule values. Thinking about differences and ratios of differences will
show that the last Simpson’s rule value will be very much more accurate than the one

before.

54
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7

Newton’s forward difference interpolation formula

Almost all candidates found the quadratic in part (i) successfully, though some insisted
on doing algebraic simplification which was not required. Part (i) was found easy too. In
part (iii), the best approach is to add on the cubic term to the quadratic already found:
this is one of the virtues of Newton’s method. Some candidates worked from scratch
here. The answers to part (iv) were frequently poor. Either the wrong numerical values
found earlier prevented sensible comments, or what candidates said was muddled and
unclear. The intended point was that the absolute change is greater in f(6) but the
relative change is greater in f(2).
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4751/01 (C1) MEI Introduction to Advanced Mathematics Raw 72 55 49 43 37 32 0
UMS 100 80 70 60 50 40 0

4752/01 (C2) MEI Concepts for Advanced Mathematics Raw 72 53 46 39 33 27 0
UMS 100 80 70 60 50 40 0

4753/01 (C3) MEI Methods for Advanced Mathematics with Coursework: Written Paper Raw 72 54 48 42 36 29 0
4753/02 (C3) MEI Methods for Advanced Mathematics with Coursework: Coursework Raw 18 15 13 11 9 8 0
4753/82 (C3) MEI Methods for Advanced Mathematics with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0
4753 (C3) MEI Methods for Advanced Mathematics with Coursework UMS 100 80 70 60 50 40 0
4754/01 (C4) MEI Applications of Advanced Mathematics Raw 90 63 56 50 44 38 0
UMS 100 80 70 60 50 40 0

4755/01 (FP1) MEI Further Concepts for Advanced Mathematics Raw 72 59 52 45 39 33 0
UMS 100 80 70 60 50 40 0

4756/01 (FP2) MEI Further Methods for Advanced Mathematics Raw 72 55 48 41 34 27 0
UMS 100 80 70 60 50 40 0

4757/01 (FP3) MEI Further Applications of Advanced Mathematics Raw 72 55 48 42 36 30 0
UMS 100 80 70 60 50 40 0

4758/01 (DE) MEI Differential Equations with Coursework: Written Paper Raw 72 63 57 51 45 39 0
4758/02 (DE) MEI Differential Equations with Coursework: Coursework Raw 18 15 13 11 9 8 0
4758/82 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0
4758 (DE) MEI Differential Equations with Coursework UMS 100 80 70 60 50 40 0
4761/01 (M1) MEI Mechanics 1 Raw 72 60 52 44 36 28 0
UMS 100 80 70 60 50 40 0

4762/01 (M2) MEI Mechanics 2 Raw 72 64 57 51 45 39 0
UMS 100 80 70 60 50 40 0

4763/01 (M3) MEI Mechanics 3 Raw 72 59 51 43 35 27 0
UMS 100 80 70 60 50 40 0

4764/01 (M4) MEI Mechanics 4 Raw 72 54 47 40 33 26 0
UMS 100 80 70 60 50 40 0

4766/01 (S1) MEI Statistics 1 Raw 72 53 45 38 31 24 0
UMS 100 80 70 60 50 40 0

4767/01 (S2) MEI Statistics 2 Raw 72 60 53 46 39 33 0
UMS 100 80 70 60 50 40 0

4768/01 (S3) MEI Statistics 3 Raw 72 56 49 42 35 28 0
UMS 100 80 70 60 50 40 0

4769/01 (S4) MEI Statistics 4 Raw 72 56 49 42 35 28 0
UMS 100 80 70 60 50 40 0

4771/01 (D1) MEI Decision Mathematics 1 Raw 72 51 45 39 33 27 0
UMS 100 80 70 60 50 40 0

4772/01 (D2) MEI Decision Mathematics 2 Raw 72 58 53 48 43 39 0
UMS 100 80 70 60 50 40 0

4773/01 (DC) MEI Decision Mathematics Computation Raw 72 46 40 34 29 24 0
UMS 100 80 70 60 50 40 0

4776/01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 62 55 49 43 36 0
4776/02 (NM) MEI Numerical Methods with Coursework: Coursework Raw 18 14 12 10 8 7 0
4776/82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0
4776 (NM) MEI Numerical Methods with Coursework UMS 100 80 70 60 50 40 0
4777/01 (NC) MEI Numerical Computation Raw 72 55 a7 39 32 25 0
UMS 100 80 70 60 50 40 0
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