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Section A (36 marks)

1 The equation f(x) = 0, where f(x) is a continuous function, is known to have a single root in the interval  
[0.4, 1.8].

 (i) Suppose the root is to be found using the bisection method. State the best possible estimate of 
the root at the start of the process. State also the maximum possible error associated with that 
estimate.

  Determine how many iterations of the bisection process would be required to reduce the maximum 
possible error to less than 0.05. [4]

 (ii) Given now that f(0.4) = –0.2 and f(1.8) = 0.5, find an estimate of the root using the false position 
method. [3]

2 The function g(x) has the values shown in the table.

x 1.80 2.00 2.20

g(x) 2.66 2.85 3.02

 (i)	 Taking	the	data	to	be	exact,	use	the	central	difference	formula	to	estimate	g′(2).	 [2]

 (ii) Suppose instead that the x values are exact but the values of g(x) are rounded to 2 decimal places. 
Find	an	appropriate	range	of	estimates	of	g′(2).	 [3]

 (iii) Now suppose that all the values in the table have been rounded to 2 decimal places. Find the 
appropriate	range	of	estimates	of	g′(2)	in	this	case.	 [3]

3 The function Q(x) is known to be quadratic and it has the values shown in the table.

x –1 1 5

Q(x) – 4 –12 20

 (i) Write down the estimate of Q(0) obtained by linear interpolation. [1]

 (ii) Use Lagrange’s method to write down an expression for Q(x). [You are not required to simplify 
this expression.] [5]

 (iii) Find the exact value of Q(0). [2]
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4 (i) Show that the equation x = 1 – x4 has a root in the interval [0.7, 0.8]. [2]

 (ii) Show, by considering the derivative of 1 – x4, that the iteration xr +1 = 1 – xr
4, with a starting value 

in the interval [0.7, 0.8], will diverge. [4]

5 (i) Find the absolute error and the relative error when X = 3.162 is used as an approximation to  
x	=	√10.	 [3]

 (ii) Find the relative error if X 4 is used as an approximation to x4. [3]

 (iii) State, in terms of k, the approximate relative error if X k is used as an approximation to x k. [1]

Section B (36 marks)

6 The integral I =  2.8

2
1+ 3x dx is to be determined numerically. You should give all your answers to  

 7 decimal places unless instructed otherwise.

 (i) Find mid-point rule and trapezium rule estimates of I, taking h = 0.8.

  Use these two estimates to find a second trapezium rule estimate and a Simpson’s rule estimate  
of I. [8]

 (ii) Find the mid-point rule estimate with h = 0.4, and hence obtain a second Simpson’s rule estimate 
of I. [3]

 (iii) You are now given that the mid-point rule estimate of I with h = 0.2 is 3.091 429 8, correct to  
7 decimal places.

  Find a third Simpson’s rule estimate. Show by considering ratios of differences that Simpson’s 
rule is of order h4.

  Give the value of I to the accuracy that appears justified. [7]

[Question 7 is printed overleaf.]
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7 The function f(x) has the exact values shown in the table.

x 1 3 5

f(x) 4 –2 10

 (i) Use Newton’s forward difference interpolation formula to find the quadratic function that fits the 
data. (There is no need to simplify your answer.) [6]

 (ii) Hence estimate the values of f(2) and f(6). State, with a reason, which of these estimates is likely 
to be more accurate. [3]

 (iii) Now suppose that f(7) = 11. Find the cubic function that fits all the data. Use this cubic to estimate 
f(2) and f(6). [7]

 (iv) Comment on (A) the absolute changes and (B) the relative changes in the estimates of f(2) and f(6) 
from part (ii) to part (iii). [2]
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1(i) Best estimate: 1.1 Maximum possible error: 0.7   [B1B1]
        
 Bisecting mpe: 0.7 → 0.35 → 0.175 → 0.0875 → 0.04375 so 4 iterations [M1A1]

         
(ii) False position: estimate is (0.4 × 0.5 – 1.8 × (–0.2) / (0.5 – (–0.2)) BoD for 0.8 alone [M1A1]
   = 0.8  [A1]
                 [TOTAL 7]
         
2(i) (3.02 – 2.66) / (2.20 – 1.80) =   0.9  [M1A1]
      
(ii) max: (3.025 – 2.655) / (2.20 – 1.80) = 0.925 [M1A1]
 min: (3.015 – 2.665) / (2.20 – 1.80) = 0.875 [A1]
       
(iii) max: (3.025 – 2.655) / (2.195 – 1.805) = 0.94872 [M1] either denominator [M1A1]
 min: (3.015 – 2.665) / (2.205 – 1.795) = 0.85366 correct. Max [2] if 3 dp [A1]
                 [TOTAL 8]
        
3(i) Linear interpolation: Q(0) = –8    write down or any method [B1]
       
(ii) Lagrange: Q(x) = (–4)(x – 1)(x – 5) / (–1 – 1)(–1 – 5) +  Lagrange form [M1]
    (–12)(x + 1)(x – 5) / (1 + 1)(1 – 5) + three terms [DM1]
     20(x + 1)(x – 1) / (5 + 1)(5 – 1) terms [A1,1,1]
        
(iii) Hence by substitution Q(0) =  –10   cao [M1A1]
                 [TOTAL 8]
        

4(i) x  1 – x4     
 0.7 < 0.7599     

 0.8 > 0.5904  (hence root)  [M1A1]

        

(ii) Derivative of 1 – x4 is   –4x3     [M1]

 x abs(–4x3)      
 0.7 1.372  > 1    [M1] for grad anywhere  
 0.8 2.048  > 1 (so for all [0.7, 0.8] abs gradient or abs RHS > 1)               in interval [M1A1E1]
                 [TOTAL 6]
        
5(i) x X abs err rel err do not insist on sign 
 3.162278 3.162 –0.00028 –0.0000878  but do require consistency [M1A1A1]
     between parts (i) and (ii) 

(ii) x4 X4 (abs err rel err  
 100 99.96488 –0.03512) –0.0003512 allow multiplying answer in (i) by 4 [M1A1A1]
       
(iii) Relative error will be approximately k × (–)0.0000878 [B1]
      
                 [TOTAL 7]

5 
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6(i) x f(x)   
 2 3  M1 = 3.0801558                                    Lose A1, 2, 3, 4   [M1A1]
 2.4 3.850195  T1 = 3.1163298                                    if 6, 5, 4, 3 dp  [M1A1]
 2.8 4.790825  T2 = 3.0982428 (=(M1+T1)/2) [M1A1]
    S1 = 3.0922138 (=(2M1+T1)/3) [M1A1]
        [subtotal 8]
(ii) x f(x)     
 2.2 3.412917  M2 = 3.0891620  [M1A1]
 2.6 4.309988  S2 = 3.0921890 (=(2M2+T2)/3)  [B1]
     or     ... 889   [subtotal 3]
       
(iii)    M4 = 3.0914298   
    T4 = 3.0937024   [B1]
    S4 = 3.0921873   [B1]
      
 S1 = 3.0922138 diffs ratio of      
 S2 = 3.0921890 –2.5E–05 diffs     
 S4 = 3.0921873 –1.6E–06 0.0648518 approx 1/16 so fourth order  [M1A1E1]
    (FT their precision)     
 Consider rate of convergence of S: conclude I = 3.09219  (or 3.092187 if using extrapolation)  [E1A1]
      [B2] for 3.09219 alone [subtotal 7]
                  [TOTAL 18]
          

7(i) x f(x) Δf(x) Δ2f(x)     
 1 4        
 3 –2 –6      
 5 10 12 18     [M1A1]
          

 f(x) = 4 + (–6)(x – 1) / 2 + 18(x – 1)(x – 3) / (22 × 2!)   [M1A1A1A1]
      [subtotal 6]
(ii) f(2) = –1.25 likely to be more accurate (interpolation)  
 f(6) = 22.75 than this (extrapolation)     [A1A1E1]

        [subtotal 3]

(iii) x f(x) Δf(x) Δ2f(x) Δ3f(x)   
 1 4     

 3 –2 –6    
 5 10 12 18   
 7 11 1 –11  –29 ← extend table  [M1A1]
      

 new f(x) = old f(x) + (–29)(x – 1)(x – 3)(x – 5) / (23 × 3!) FT incorrect old f(x) here  [M1A1]
          
         
 f(2) = –1.25 + (–1.8125) = –3.0625   [M1] for substituting  [M1A1]
 f(6) = 22.75 + (–9.0625) = 13.6875   cao for each [A1]  [A1]
         [subtotal 7]
(iv) Absolute change greater in f(6), relative change greater in f(2) Must have all 4 values correct  [E1E1]
 [E1], [E1] for intelligent comments on absolute, relative changes  [subtotal 2]
                  [TOTAL 18]
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4776/01: Numerical Methods 
(Written Examination) 

General Comments 
 
Most candidates found this a straightforward paper, and there were many high marks. 
Candidates showed a good grasp of the basic ideas of numerical mathematics, but as in 
previous years the standard of presentation of work was frequently not good. The point 
has to be made yet again that numerical mathematics is systematic and algorithmic. 
Setting down work in a logical order, frequently in tabular form, makes it easier to see 
whether a solution is correct – easier, that is, for both the candidate and the marker. 
Jumbles of unidentified numbers scattered across a page are unlikely to receive credit. 
 
Comments on Individual Questions 
 
1 Solution of an equation 

In part (i), the idea of halving the maximum possible error at each iteration was well 
understood, but many candidates counted the starting position of the bisection method 
as an iteration. In part (ii), false position was usually done correctly. 
 

2 Numerical differentiation 
Parts (i) and (ii) were generally done well, but part (iii) defeated most candidates. The 
idea in part (iii) is to combine the largest possible numerator with the smallest possible 
denominator, and vice versa. 
 

3 Lagrange’s interpolation formula 
This was a straightforward question, but quite a number of candidates were not able to 
apply linear interpolation in part (i). In part (ii) there were the usual confusions between 
x values and function values. The question said, quite clearly, that no algebraic 
simplification was required; some candidates chose to simplify anyway. 
 

4 Fixed point iteration 
Locating the root in part (i) was very easy, but the majority of candidates were unable 
to use the magnitude of the derivative in a region surrounding the root to show that the 
iteration will diverge. 
 

5 Absolute and relative errors 
The numerical work in parts (i) and (ii) was done well by almost all. In part (iii), 
candidates were expected to know that when a number with a small relative error is 
raised to a power k the relative error will be increased (approximately) by a factor of k. 
This part was not done well. 
 

6 Numerical integration 
The numerical work in first two parts was done well by the vast majority of candidates. 
Part (iii) was more challenging. Not all candidates appeared to know how to recognise 
fourth order convergence. Some knew what to look for but arithmetical errors prevented 
them finding it. The value of I was often given to fewer decimal places than the work 
warranted. It is not correct to look for the number of figures of agreement in the two 
best Simpson’s rule values. Thinking about differences and ratios of differences will 
show that the last Simpson’s rule value will be very much more accurate than the one 
before. 

 54
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7 Newton’s forward difference interpolation formula 
Almost all candidates found the quadratic in part (i) successfully, though some insisted 
on doing algebraic simplification which was not required. Part (i) was found easy too. In 
part (iii), the best approach is to add on the cubic term to the quadratic already found: 
this is one of the virtues of Newton’s method. Some candidates worked from scratch 
here. The answers to part (iv) were frequently poor. Either the wrong numerical values 
found earlier prevented sensible comments, or what candidates said was muddled and 
unclear. The intended point was that the absolute change is greater in f(6) but the 
relative change is greater in f(2). 
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