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Section A (36 marks)

1 (i) Show that the equation

  1
x  = 3 – x2   (*)

  has a root, a, between x =1 and x = 2.

  Show that the iteration

  xr+1 = 1
3 – x 2r

 ,

  with x0 = 1.5, converges, but not to a. [5]

 (ii) By rearranging (*), find another iteration that does converge to a. You should demonstrate the 
convergence by carrying out several steps of the iteration. [3] 

2 A function f(x) has the values shown in the table.

x 2.8 3 3.2

f(x) 0.9508 0.9854 0.9996

 (i) Taking the values of f(x) to be exact, use the forward difference method and the central difference 
method to find two estimates of f′(3). State which of these you would expect to be more accurate.
 [5]

 (ii) Now suppose that the values of f(x) have been rounded to the four significant figures shown. Find, 
for each method used in part (i), the largest possible value it gives for the estimate of f′(3). [2]

3 (i) X is an approximation to the number x such that X = x (1 + r). State what r represents.

  Show that, provided r is small, X n ≈ x n (1 + nr). [4]

 (ii) The number G = 0.577 is an approximation to the number g. G is about 0.04% smaller than g. 
State, in similar terms, relationships between

  (A) G2 and g2,

  (B) G and g . [3]

4 The expression, sin x + tan x, where x is in radians, can be approximated by 2x for values of x close to 
zero.

 (i) Find the absolute and relative errors in this approximation when x = 0.2 and x = 0.1. [4]

 (ii) A better approximation is sin x + tan x ≈ 2 x + x
3

k , where k is an integer.

  Use your results from part (i) to estimate k. [3]
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5 A quadratic function, f(x), is to be determined from the values shown in the table.

x 1 3 6

f(x) –10 –12 30

 Explain why Newton’s forward difference formula would not be useful in this case.

 Use Lagrange’s interpolation formula to find f(x) in the form ax2 + bx + c. [7]

Section B (36 marks)

6 The integral

   I = 1.8

1
x3 1+  dx

 is to be estimated numerically. You are given that, correct to 6 decimal places, the mid-point rule 
estimate with h = 0.8 is 1.547 953 and that the trapezium rule estimate with h = 0.8 is 1.611 209.

 (i) Find the mid-point rule and trapezium rule estimates with h = 0.4 and h = 0.2.

  Hence find three Simpson’s rule estimates of I. [7]

 (ii) Write down, with a reason, the value of I to the accuracy that appears to be justified. [2]

 (iii) Taking your answer in part (ii) to be exact, show in a table the errors in the mid-point rule and 
trapezium rule estimates of I.

  Explain what these errors show about 

  (A) the relative accuracy of the mid-point rule and the trapezium rule,

  (B) the rates of convergence of the mid-point rule and the trapezium rule. [8]

7 (i) Show that the equation

  x5 – 8x + 5 = 0   (*)

  has a root in the interval (0, 1).

  Find this root, using the Newton-Raphson method, correct to 6 significant figures.

  Show, by considering the differences between successive iterates, that the convergence of the 
Newton-Raphson iteration is faster than first order. [11]

 (ii) You are now given that equation (*) has a root in the interval (1.4, 1.5). Find this root, correct to 3 
significant figures, using the secant method. Determine whether or not the secant method is faster 
than first order. [8]
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1(i) x LHS  RHS     
 1 1 < 2 (Change of sign implies root.)  
 2 0.5 > -1  (or equivalent)  [M1A1]

         
 r 0 1 2 3 4 5 6  

 xr 1.5 1.333333 0.818182 0.429078 0.355127 0.347961 0.347352 [M1A1]
  State or clearly imply convergence outside the interval (1, 2)  [E1]
      

(ii) E.g. xr+1 = √(3 - 1/x) E.g. xr+1 = 3/x - 1/x2 [B1]
 r 0 1 2 3 0 1 2 3

 xr 1.5 1.527525 1.531452 1.532 1.5 1.555556 1.515306 1.544287
    4 5 4 5 [M1A1]
        1.532077 1.532087   1.523326 1.538438 [TOTAL 8] 

          
2(i) Forward difference: (0.9996 - 0.9854)/0.2 = 0.071    [M1A1]
 Central difference: (0.9996 - 0.9508)/0.4 = 0.122   [M1A1]
 Central difference expected to be more accurate.   [E1]
        
(ii) Forward difference maximum: (0.99965 - 0.98535)/0.2 = 0.0715 [B1]
 Central difference maximum: (0.99965 - 0.95075)/0.4 = 0.12225  [B1]
                  [TOTAL 7]
         
3(i) r is the relative error (in X as an approximation to x)    [E1]

 Xn = xn (1 + r)n (1 + r)n = 1 + nr (provided r is small)  [M1M1A1]
       

(ii) G2 (= 0.332 929, not required) is about 0.08% smaller than g2   
 √G (= 0.795 605, not required) is about 0.02% smaller than √g   [M1A1A1]
         
                  [TOTAL 7]
         
4(i) x sin + tan 2x error rel error accept: +ve, +ve  
 0.2 0.401379 0.4 -0.00138 -0.00344  -ve, +ve  [M1A1A1A1]
 0.1 0.200168 0.2 -0.00017 -0.00084  -ve, -ve  
        

(ii) 2 × 0.23 / k = 0.00138 gives k = 11.59 Either of these (or other methods) [M1A1]

 2 × 0.13 / k = 0.00017 gives k = 11.76 to suggest k = 12   [B1]
                  [TOTAL 7]
         
5 Data not equally spaced in x   [E1]
       
 f(x) = - 10(x - 3)(x - 6) / (1 - 3)(1 - 6) - 12(x - 1)(x - 6) / (3 - 1)(3 - 6) + 30(x - 1)(x - 3) / (6 - 1)(6 - 3) 
       [M1A1A1A1]

 f(x) = - (x2 - 9x +18) + 2(x2 - 7x + 6) + 2(x2 - 4x + 3)   [A1]

      = 3x2 - 13x      [A1]
                  [TOTAL 7]
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6(i) h M T S   

 0.8 1.547953 1.611209 1.569038    M: [M1A1A1]
 0.4 1.563639 1.579581 1.568953    T: [M1A1]
 0.2 1.567619 1.571610 1.568949    S: [M1A1]
      [subtotal 7]
(ii) 1.56895 appears justified Comparison of last two S values, e.g.:  [B1]
 last change in S is -0.000004; next change negligible   [E1]
        [subtotal 2]
(iii) h M error T error     
 0.8 -0.02100 0.04226  accept consistent  
 0.4 -0.00531 0.01063  use of other sign  
 0.2 -0.00133 0.00266  convention   [M1A1A1] 
         
 (A) M errors are about half the T errors so M is twice as accurate as T [E1A1]
 (B) Errors for both T and M reduce by a factor of 4 as h is halved so [E1]
  the rates of convergence are the same, both second order  [A1A1]
       [subtotal 8]
                  [TOTAL 17]
          
7(i) f(0) = 5, f(1) = -2. (Change of sign implies root.)    [M1A1]
         

 f '(x) = 5x4 - 8   hence N-R formula     [M1A1]
          
 r 0 1 2 3 4    

 xr 0.5 0.634146 0.638232 0.638238 0.638238   [M1A1A1]
 differences  0.134146 0.004086 5.98E-06 1.29E-11   [A1]
 ratios   0.030457 0.001462 2.17E-06   [M1A1]
 The ratios of differences are decreasing (fast) so process is faster than first order [E1]

 
  

  
  

 
[subtotal 

11]
       

(ii) r 0 1 2 3 4   

 xr 1.4 1.5 1.458054 1.462741 1.46312   

 f(xr) 
-0.82176 0.59375 -0.0747 -0.00559 5.99E-05   [M1A1A1]

  root is 1.46 correct to 3 sf     [A1]
          
  differences 0.1 -0.04195 0.004687 0.000379   [A1]
  ratios  -0.41946 -0.11175 0.080876   [M1A1]
 The ratios of differences are decreasing (fast) so process is faster than first order [E1]
      accept 'second order' [subtotal 8]
                  [TOTAL 19]
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4776 Numerical Methods (Written Examination) 

General comments 
There was a lot of good work seen, but as ever there were some candidates who 
appeared to be unready for the examination. Routine numerical calculations were 
generally carried out accurately, though it is yet again disappointing that so many 
candidates set their work out badly. This is an algorithmic subject and good work will 
reflect that. A poor layout is difficult to follow for the examiner – and difficult for the 
candidate to check.  
 
Interpretation is still a weak area, with quite a number of candidates simply omitting such 
parts of questions – or writing vaguely and at length in the hope that they will produce 
something worthy of a mark.  
 
 
Comments on individual questions 
1) (Fixed point iteration to solve an equation) 

This proved an easy starter for most candidates. There were many solutions gaining 
full marks, though a significant minority failed to find a convergent iteration in part (ii).  
 

2)  (Numerical differentiation) 
The first part of this question proved easy for most candidates. The second part, 
however, was a little more challenging for some. A curious error, seen quite a few 
times, involved saying that if 0.9996 is correct to 4 decimal places then its maximum 
possible value is 0.99964. Presumably the reasoning was that 0.99965 would round 
to 0.9997. This is of course incorrect. 
 

3)  (Relative error) 
The relationship X = x(1 + r) proved troublesome once again. Candidates are just not 
happy with errors analysed this way. For certain sorts of problem – such as the one in 
this question – it is by far the easiest approach. In part (ii), candidates were asked to 
‘state, in similar terms, a relationship …’. An algebraic result without a suitable form of 
words did not gain full marks.  
 

4) (Numerical approximation) 
The first four marks were obtained easily by most candidates with only a few making 
errors in the numerical work or the signs. (There are two conventions for the meaning 
of the word ‘absolute’ in the term ‘absolute error’. Some books take ‘absolute’ to be a 
contrast with ‘relative’; others take it to mean the positive value. Either interpretation, 
used consistently, is acceptable.) Part (ii) was not done well. In quite a number of 
cases the idea was understood well enough, but the calculation of k involved 
algebraic errors. Many candidates appeared to ignore the information that k is an 
integer.  
  

5) (Lagrange’s interpolation formula) 
This was an easy source of marks for many, but as usual some got the x and f(x) 
values muddled. There were some algebraic errors in the simplification, but perhaps 
fewer than usual. 
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6) (Numerical integration) 
Part (i) was an easy source of marks for most, though there was a lot of inefficient 
work poorly set out. In part (ii), the correct approach is to compare the Simpson’s rule 
estimates and, noting how small the change is between the second and third values, 
to conclude that 1.56895 is justified. In part (iii), candidates were mostly able to 
calculate the errors in the mid-point and trapezium rules. The interpretation of those 
errors was less well done however, with a lot of rather vague statements being made.  

 
 

7) (Newton-Raphson and secant methods) 
In part (i), the root was generally found successfully using the Newton-Raphson 
method. Candidates were then required to find differences and ratios of differences to 
assess the rate of convergence. Quite a number of candidates said that because the 
ratios of differences are not constant the process is faster than first order. This was 
not enough: they needed to say that ratios of differences are decreasing (fast).  

 
In part (ii), some candidates seemed less secure in their use of the secant method. 
The conclusion about the rate of convergence was handled much as in part (i). 
 


