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Section A (36 marks)

1 Show that the equation

   2x + �1
2�

x
 = 3

 has a root between x = 1.3 and x = 1.5. Use the bisection method to find an estimate of this root with a 
maximum possible error less than 0.02.

 Determine how many further iterations would be required to reduce the maximum possible error to less 
than 0.001. [8]

2 An integral, � b

a

f(x) dx, is being evaluated numerically. Some mid-point rule and trapezium rule

 estimates are shown in the table.

h Mid-point rule Trapezium rule

1 2.579 768 2.447 490

0.5 2.547 350

 Find the trapezium rule estimate for h = 0.5.

 Find two Simpson’s rule estimates and hence state, with a reason, the value of the integral to the 
accuracy that appears justified. [7]

3 (i) Given that f(x) = x3 – x2 + 1, find f(0.5).

  Use the formula f(x + h) ≈ f(x) + h f (́x) to show that

   f(0.5 + h) ≈ 0.875 – 0.25 h. [3]

 (ii) Hence determine the approximate range of values of x for which f(x) = 0.875 correct to 3 decimal 
places. [4]

4 (i) Show algebraically that

   (k + 1)2 + (k – 1)2 – 2k2 = 2    (*)

  for all values of k. [2]

 (ii) Use your calculator to evaluate the left hand side of (*) for increasingly large values of k (e.g. 103, 
106, 109, …). State briefly two important results in numerical methods that are illustrated by your 
working. [4]
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5 A function f(x) has the following values correct to 3 decimal places.

x 0 1 2 3 4

f(x) 1.883 2.342 2.874 3.491 4.206

 (i) Show, by means of a difference table, that a cubic polynomial fits these data points closely but not 
exactly. [4]

 (ii) Use Newton’s forward difference formula to estimate the value of f(1.5). [4]

Section B (36 marks)

6 (i) The derivative of a function is to be estimated numerically. Show, with the aid of a sketch, that the 
central difference method will generally be more accurate than the forward difference method. [4]

 (ii) The table shows two values of tan xº correct to 7 significant figures.

x 60 62

tan xº 1.732 051 1.880 726

  Use these two values to estimate the derivative of tan xº at x = 60.

  Use your calculator to find two further estimates of this derivative, using the forward difference 
method and taking h = 1 and h = 0.5. [4]

 (iii) Use the central difference method with h = 2, h = 1 and h = 0.5 to obtain three estimates of the 
derivative of tan xº at x = 60. [4]

 (iv) Show that the differences between the estimates in part (ii) reduce by a factor of about 0.5 as h is 
halved.

  By considering the differences between the estimates in part (iii) show that the central difference 
method seems to converge more rapidly than the forward difference method. [6]

[Question 7 is printed overleaf.]
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7 (i) Show, by means of a sketch or otherwise, that the equation

   x = 3 sin x,   (*)

  where x is in radians, has a root, α, in the interval (1
2

 π, π). Determine how many other non-zero 
roots, if any, the equation has. [3]

 (ii) Determine whether or not the iteration 

   xr+1 = 3 sin xr,

  starting with x0 = 2, converges to α. Illustrate your answer with a staircase or cobweb diagram as 
appropriate. [7]

 (iii) Show that equation (*) may be rearranged into the form

   x = sin x + 2
3  x.

  Show that the corresponding iteration, starting with x0 = 2, converges rapidly. State to 5 decimal 
places the value to which the iteration converges. Verify that this value for α is correct to 5 decimal 
places. [8]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials.  OCR has attempted to identify and contact all copyright holders 
whose work is used in this paper.  To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright 
Acknowledgements Booklet.  This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public 
website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible 
opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. 

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a 
department of the University of Cambridge.



4776 Mark Scheme January 2010 

64 

4776 Numerical Methods 
1 x LHS      
 1.3 2.868415 < 3      
 1.5 3.181981 > 3      [M1A1]

    mpe (may be implied)    
 1.4 3.017945  0.1     [M1]
 1.35 2.941413  0.05   [A1]
 1.375 2.979232  0.025   [A1]
 1.3875   0.0125 finishing at this point: [A1]
      
 mpe: 0.00625 0.003125 0.001563 0.000781 < 0.001 so 4 more iterations [M1A1]
                  [TOTAL 8]
          
          
2 h M T S     
 1 2.579768 2.447490 2.535675   T [M1A1]
 0.5 2.547350 2.513629 2.536110    S [M1A1A1]
         
 2.536 secure by comparison of S values.    [E1A1]

                  
[TOTAL 7]

 
3(i) f '(x) = 3 x2 – 2 x so f '(0.5) = –0.25     [B1B1]
 f(0.5) = 0.875 hence given result      [B1]
        
        
(ii) Require –0.0005 < 0.25 h < 0.0005      [M1A1]
 Hence –0.002 < h < 0.002     [A1]
 And so 0.498 < x < 0.502      [B1]

                  
[TOTAL 7]

 
4(i) Convincing algebra to given result    [M1A1]
         
      
(ii) Eg k = 1000 correct evaluation to 2    [B1]
  k = 1000000 incorrect evaluation to zero (NB some will need larger k) [B1]
 Mathematically equivalent expressions do not always evaluate equally  [E1]
 (because calculators do not store (large) numbers exactly)   
 Subtraction of nearly equal quantities often causes problems   [E1]

                  
[TOTAL 6]
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5(i) x f(x) Δf(x) Δ2f(x) Δ3f(x)   
 0 1.883   1st diff: [M1A1]
 1 2.342 0.459  2nd, 3rd [F1]
 2 2.874 0.532 0.073    
 3 3.491 0.617 0.085 0.012    
 4 4.206 0.715 0.098 0.013     
    3rd diffs almost constant    [E1]
       
       
(ii) f(1.5) = 1.883 + 0.459 × 1.5 + 0.073 × 1.5 × 0.5 / 2! + 0.012 × 1.5 × 0.5 × (–0.5) / 3! [M1A1A1]
 f(1.5) =  2.598125 or 2.598 to 3 dp     [A1]

                  
[TOTAL 8]

 
6 (i) Sketch of smooth curve and its tangent.   [G1]

 Forward and central difference chords.     [G1G1]
 Clear statement or implication that the central difference chord has gradient 
 closer to that of the tangent     [E1]
       

       
[subtotal 4]

       
(ii) h tan 60º  tan (60 + h)º derivative    

 2 1.732051 1.880726  0.074338    [M1A1]
 1 1.732051 1.804048  0.071997    [A1]
 0.5 1.732051 1.767494  0.070886    [A1]

        
[subtotal 4]

        
(iii) h  tan (60 + h)º tan (60 – h)º derivative    

 2  1.880726 1.600335  0.070098   [M1A1]
 1  1.804048 1.664279  0.069884   [A1]
 0.5  1.767494 1.697663  0.069831   [A1]

         
[subtotal 4]

      
(iv) forward difference: derivative diffs ratio    

    of diffs     
   0.074338     
   0.071997 –0.00234     

   0.070886 –0.00111 0.474407 (about 0.5, may be implied) [M1A1A1]
         
 central difference: derivative diffs ratio    
    of diffs     
   0.070098     
   0.069884 –0.00021     
   0.069831 –5.3E–05 0.24896 (about 0.25, less than [M1A1E1]
     forward difference, hence faster) [subtotal 6]

                  
[TOTAL 18]
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7 (i) Sketch showing y = 3 sin x and y = x with intersection in (½π, π)  [G1G1]
 State or show that there is only one other non-zero root   [E1]
         [subtotal 3]
          
          

(ii) r 0 1 2 3 4 5   

 xr 2 2.727892 1.206001 2.80259 0.997639 2.52058  [M1A1A1]
  clearly not converging     [B1]
  Cobweb diagram to illustrate process    [G3]

        [subtotal 7]
       
       
(iii) Convincing algebra to given result.   [M1]

       
 r 0 1 2 3 4 5  

 xr 2 2.242631 2.277768 2.278844 2.278862 2.278863 [M1A1A1]
 Root appears to be 2.27886 to 5 dp   [A1]
         
 x  sin x + ⅔ x      
 2.278855 < 2.2788625     
 2.278865 > 2.2788627 hence result is correct to 5 dp  [M1A1E1] 
         [subtotal 8]
         
         
                  [TOTAL 18]
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