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Section A (36 marks)

1 (i) Show by means of a difference table that a quadratic function fits the following data points.

x –3 –1 1 3

y –16 –2 4 2
 [3]

 (ii) Obtain the equation of the quadratic function, expressing your answer in its simplest form. [5]

2 (i) Use the formula for the difference of two squares to show that

   x x x x+ −( ) + +( ) =1 1 1. (*)   [2]

 (ii) A spreadsheet shows 50001  as 223.6090 and 50000  as 223.6068.

  Use the spreadsheet figures to obtain values of  50001  – 50000

  (A) by subtraction,

  (B) by using (*)

  Comment on your results. [5]

3 (i) For the integral 

  I = 0.8

0
1 5− x xd  

  find the trapezium rule and mid-point rule estimates with h = 0.8 in each case. Use these estimates 
to obtain a Simpson’s rule estimate. [4]

 (ii) Given that the mid-point rule estimate with h = 0.4 is 0.784 069 to 6 significant figures, obtain a 
second Simpson’s rule estimate. Without doing any further calculations, give a value for I to the 
accuracy that is justified. [4]

4 (i) An approximation to cos x, where x is small and in radians, is given by

   cos x ≈ 1 – 0.5 x2.

  Find the absolute and relative errors in this approximation when x = 0.3. [4]

 (ii) The formula 

   cos x ≈ 1 – 0.5 x2 + k x4

  gives a better approximation if k is suitably chosen. By considering x = 0.3 again, estimate k. [2]
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5 A student is investigating the iteration 

  xr + 1 = xr
2 – 3xr + 3

 for different starting values x0.

 Determine the values of x1 and x2 in each of the cases x0 = 3, x0 = 2.99, x0 = 3.01.

 Evaluate the derivative of x2 – 3x + 3 at x = 3. 

 Comment on your results. [7]

Section B (36 marks)

6 (i) Show that the equation

   sin cos . ,x x+ =1 5    (*)

  where x is in radians, has a root in the interval (0.2, 0.3).

  Perform two iterations of the bisection method and give the interval within which the root lies, the 
best estimate of the root, and the maximum possible error in that estimate. [6]

 (ii) Now perform two iterations of the secant method, starting with x0 = 0.2 and x1 = 0.3. Give an 
estimate of the root to an appropriate number of significant figures.

  Comment on the relative rate of convergence of the bisection method and the secant method. [6]

 (iii) You are given that equation (*) also has a root a which is 1.298 504 to 6 decimal places. An 
iteration to find this root produces the following sequence of values.

r 0 1 2 3 4

xr 1.4 1.314 351 1.298 887 1.298 504 1.298 504

  By considering the values of xr – a, show that this iteration displays second order convergence 
making it clear what that means. [6]

[Question 7 is printed overleaf.]
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7 A function f(x) has values, correct to 6 significant figures, as given in the table.

x –0.4 –0.2 –0.1 0 0.1 0.2 0.4

f(x) 0.601 201 0.711 982 0.765 298 0.816 603 0.865 314 0.911 308 0.994 506

 (i) Obtain three estimates of f9(0) using the forward difference method with h equal to 0.4, 0.2, 0.1. 
Show that the differences between these estimates are approximately halved as h is halved. [4]

 (ii) Obtain three estimates of f9(0) using the central difference method. Show, by considering the 
differences between these estimates, that the central difference method converges more rapidly 
than the forward difference method. [4]

 (iii) D1 and D2 are two estimates of a quantity d.

  (A) Suppose that the error in D2 is approximately half of the error in D1. Write down 
expressions for the errors in D1 and D2 and hence show that d ≈ 2D2 – D1.

  (B) Now suppose that the error in D2 is approximately a quarter of the error in D1. Show that 

d ≈ 
4D2 – D1

3 . [5]

 (iv) Use the results in part (iii)(A) and part (iii)(B) to obtain two further estimates of f9(0). Give an 
estimate of f9(0) to the accuracy that you consider justified. [5]
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4776 Numerical Methods 

1(i) x y 1st diff 2nd diff      
 -3 -16        
 -1 -2 14       

 1 4 6 -8     [M1A1] 
 3 2 -2 -8 2nd difference constant so quadratic fits [E1] 
          
(ii) f(x) = -16 + 14(x + 3)/2 - 8(x + 3)(x + 1)/8     [M1A1A1A1] 
       = -16 + 7x + 21 - x2 - 4x - 3      
       = 2 + 3x - x2       [A1] 
                  [TOTAL 8] 
          
2(i) Convincing algebra to demonstrate result     [M1A1] 
(ii)(A) Direct subtraction: 0.0022      [B1] 
(B) Using (*):  1/(223.6090+223.6068) = 0.002236057   [M1A1] 
 Second value has many more significant figures ("more accurate") -- may be implied [E1] 
 Subtraction of nearly equal quantities loses precision   [E1] 
          
                  [TOTAL 7] 
          
3(i) x f(x)        
 0 1        
 0.8 0.819951  T1 = 0.72798    [M1] 
 0.4 0.994867  M1 = 0.795893    [M1] 
    hence S1 = 0.773256    [M1] 
        all values  [A1] 
(ii)  T2 =  0.761937      [B1] 
  M2 =  0.784069 so S2 = 0.776692    [M1A1] 
 S2 will be much more accurate than S1 so 0.78 or 0.777 would be justified [A1] 
                  [TOTAL 8] 
          

4(i) x cosx 1 - 0.5x2 
 

error rel error     
 0.3 0.955336 0.955 -0.000336 -0.000352 condone signs here  [M1A1A1A1] 
      but require correct   
(ii)  want k 0.34 = 0.000336  sign for k  [M1] 
  gives k =  0.041542 (0.0415, 0.042, 1/24)   [A1] 
          
                  [TOTAL 6] 
          
5 r 0 1 2      
 xr 3 3 3      
 xr 2.99 2.9701 2.911194     [M1A1A1] 
 xr 3.01 3.0301 3.091206      
  Derivative is 2x - 3. Evaluates to 3 at x = 3   [M1A1] 
  3 is clearly a root, but the iteration does not converge  [E1] 
  Need -1 < g'(x) < 1 at root for convergence   [E1] 
                  [TOTAL 7] 
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6(i) Demonstrate change of sign (f(a), f(b) below) and hence existence of root  [B1] 
 a b f(a) f(b) x mpe f(x)   

 0.2 0.3 -0.06429 0.021031 0.25 0.05 -0.01827  [M1] 
 0.25 0.3 -0.01827 0.021031 0.275 0.025 0.002134  [M1] 
 0.25 0.275   0.2625 0.0125 -0.00787  [A1A1A1] 
         [subtotal 6] 
(ii) r xr fr       
 0 0.2 -0.06429       
 1 0.3 0.021031       
 2 0.275352 0.00241      [M1A1] 
 3 0.272161 -0.0001      [M1A1] 
    accept 0.27 or 0.272 as secure  [A1] 
    secant method much faster   [E1] 
         [subtotal 6] 
          
(iii) r xr er er+1/er

2      
 0 1.4 0.101496     e col: [M1A1] 
 1 1.314351 0.015847 1.538329    e/e2 col: [M1A1] 

 2 1.298887 0.000383 1.525122      
 3 1.298504 = root      equal values show 2nd order convergence [E1] 
         second order convergence: each error is   
         proportional to the square of the previous error [E1] 
          
         [subtotal 6] 
                  [TOTAL 18] 
          
7(i) fwd diff: h 0.4 0.2 0.1     
  f '(0) 0.444758 0.473525 0.48711    [M1A1A1] 
  diffs  0.028768 0.013585 approx halved  [B1] 
         [subtotal 4] 

          
(ii) cent diff: h 0.4 0.2 0.1     
  f '(0) 0.491631 0.498315 0.50008    [M1A1A1] 
  diffs  0.006684 0.001765 reduction greater than [B1] 

      for forward difference [subtotal 4] 
          

(iii) (D2 - d) = 0.5 (D1 - d) convincing algebra to d = 2D2 - D1  [M1A1] 
          
 (D2 - d) = 0.25 (D1 - d) convincing algebra to d = (4D2 - D1)/3  [M1A1A1] 
         [subtotal 5] 
          
(iv) fwd diff:     2(0.48711) - 0.473525 =  0.500695    [M1A1] 
          
 cent diff:   (4(0.50008) - 0.498315) / 3 = 0.500668    [M1A1] 
          
     0.5007 seems secure  [E1] 
         [subtotal 5] 
                  [TOTAL 18] 
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