ADVANCED SUBSIDIARY GCE

MONDAY 16 JUNE 2008
Afternoon
Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (36 marks)

1 The equation $\mathrm{f}(x)=0$ is known to have a single root in the interval (3,3.5). Given that $\mathrm{f}(3)=0.5$ and $f(3.5)=-0.8$, estimate the root using linear interpolation.

State the maximum possible error in this estimate.

2 The function $\mathrm{f}(x)$ has the values shown in the table. The value of k is to be determined.

x	1	3	5	7	9
$\mathrm{f}(x)$	2	1	5	k	2

Use a difference table to obtain the value of k, assuming that $\mathrm{f}(x)$ is a cubic.

3 The function $\mathrm{f}(x)=\sqrt{1+3^{x}}$ is to be differentiated numerically.
Use the central difference method with $h=0.2$ to estimate the derivative at $x=2$. Obtain further estimates with $h=0.1$ and $h=0.05$.

By considering the differences between successive estimates, find the value of the derivative to an accuracy of 3 decimal places.

4 Show that a Newton-Raphson iteration to find the cube root of 25 is

$$
x_{r+1}=x_{r}-\frac{x_{r}^{3}-25}{3 x_{r}^{2}} .
$$

Perform three steps of this iteration, beginning with $x_{0}=4$. Show, by considering the differences between successive iterates, that the convergence is faster than first order.

5 (i) Find $\sin 86^{\circ}-\sin 85^{\circ}$ to the accuracy given by your calculator.
(ii) A simple spreadsheet works to an accuracy of 6 significant figures. All intermediate answers used in calculations are rounded to 6 significant figures.

Write down the values of $\sin 86^{\circ}$ and $\sin 85^{\circ}$ as given by this spreadsheet. Hence find the value the spreadsheet gives for $\sin 86^{\circ}-\sin 85^{\circ}$.
(iii) You are now given that $\sin 86^{\circ}-\sin 85^{\circ}=2 \cos 85.5^{\circ} \sin 0.5^{\circ}$. Find the value the spreadsheet gives for this expression.
(iv) Use your working from parts (ii) and (iii) to explain how two expressions that are mathematically identical can nevertheless evaluate differently.

Section B (36 marks)

6 The integral $\int_{1}^{3} \sqrt{1+\sin x}$ d , where x is in radians, is to be evaluated numerically.
(i) Copy and complete the following table.

h	Mid-point rule estimate	Trapezium rule estimate
2	$M_{1}=2.763547$	$T_{1}=$
1	$M_{2}=$	$T_{2}=$
0.5	$M_{4}=$	$T_{4}=$

(ii) Show that the differences between successive mid-point rule estimates reduce by a factor of about 4.

State a result about the differences between successive trapezium rule estimates.
(iii) Now let $S_{1}=\frac{1}{3}\left(2 M_{1}+T_{1}\right)$, with S_{2} and S_{4} defined similarly.

Calculate S_{1}, S_{2}, S_{4} and the differences $S_{2}-S_{1}, S_{4}-S_{2}$. By considering these differences, give the value of the integral to the accuracy that appears justified.

7 The equation $x^{2}=4+\frac{1}{x}$ has three roots.
(i) Show graphically that the equation has exactly one root for $x>0$. Find the integer a such that this positive root lies in the interval $(a, a+1)$.

Use the fixed-point iteration

$$
\begin{equation*}
x_{r+1}=\sqrt{ }\left(4+\frac{1}{x_{r}}\right) \tag{*}
\end{equation*}
$$

to determine the positive root correct to 4 decimal places.
(ii) The equation also has two negative roots. Without doing any calculations, explain why the iteration (*) cannot be used to find these negative roots.

Use the fixed-point iteration

$$
\begin{equation*}
x_{r+1}=-\sqrt{ }\left(4+\frac{1}{x_{r}}\right) \tag{**}
\end{equation*}
$$

to find a negative root near to $x=-2$ correct to 4 decimal places.
(iii) The third root of the equation lies in the interval $(-1,0)$. Show that the iteration $\left({ }^{* *}\right)$ used in part (ii) will not converge to this third root. Use another fixed point iteration to find the third root correct to 4 decimal places.

4776 Numerical Methods

1

x	3	3.5
$f(x)$	0.5	-0.8

$$
\begin{aligned}
\text { root }= & (3 \times(-0.8)-3.5 \times 0.5) /(-0.8-0.5) \\
& =.192308 \quad(3.192,3.19)
\end{aligned}
$$

[M1A1A1]
(-) mpe is $3.5-3.192308=0.307602(0.308,0.31)$
[M1A1]
[TOTAL 6]

6 (i)

h	M	T
2	2.763547	2.425240
1	2.677635	2.594393
0.5	2.656743	2.636014

mid-point:
trapezium:
[M1A1A1]
[M1A1A1A
1]
[subtotal 7]
(ii)

M:	2.763547	diffs	
	2.677635	-0.08591	
	2.656743	-0.02089	reducing by a factor 4 (may be implied)

[M1A1E1]
Differences in T reduce by a factor 4, too
[B1]
[subtotal 4]
(iii)

M	T	S	
2.763547	2.425240	2.650778	
2.677635	2.594393	2.649888	-0.00089033

Differences in S reducing fast e.g by a factor of (about) 16
[M1]
[A1A1]
[A1]

How this leads to an answer, e.g:
Next difference about -0.0000034 and/or next answer about 2.649830
[E1] Accept 2.6498 or 2.64983
[A1]
[subtotal 7]

7 (i) Eg: graph of x^{2} and $4+1 / x$ for $x>0$ showing single intersection
Change of sign to find interval $(2,3)$ - i.e. $a=2$

r	0	1	2	3	4	5
x_{r}	2.5	2.097618	2.115829	2.114859	2.11491	2.114907
	2.1149 secure to 4 dp					

[M1A1A1]
(ii) The iteration gives positive values only.

r	0	1	2	3	4	5
X_{r}	-2	-1.87083	-1.86158	-1.86087	-1.86081	-1.86081
	-1.8608 secure to $4 d p$					

[M1A1A1]
$\begin{array}{llrrrrr}\text { (iii) } \quad \text { Eg } & r & 0 & 1 & 2 & 3 & 4 \\ & x_{r} & -0.5 & -1.41421 & -1.81463 & -1.85713 & -1.86052\end{array}$
not converging to required root (converging to previous root)
Eg $\quad x_{r+1}=1 /\left(x_{r}^{2}-4\right)$

r	0	1	2	3	4	5
X_{r}	-0.5	-0.26667	-0.25452	-0.25412	-0.2541	-0.2541
	-0.2541 secure to $4 d p$					

