

ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

4776/01

Numerical Methods

MONDAY 16 JUNE 2008

Afternoon

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)

Graph paper

MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **72**.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.

SP (KN) T38891/4 © OCR 2008 [M/102/2666] OCR is an exempt Charity **[Turn over**

Section A (36 marks)

The equation f(x) = 0 is known to have a single root in the interval (3, 3.5). Given that f(3) = 0.5 and f(3.5) = -0.8, estimate the root using linear interpolation.

State the maximum possible error in this estimate.

[6]

2 The function f(x) has the values shown in the table. The value of k is to be determined.

x	1	3	5	7	9
f(x)	2	1	5	k	2

Use a difference table to obtain the value of k, assuming that f(x) is a cubic.

[6]

3 The function $f(x) = \sqrt{1 + 3^x}$ is to be differentiated numerically.

Use the central difference method with h = 0.2 to estimate the derivative at x = 2. Obtain further estimates with h = 0.1 and h = 0.05.

By considering the differences between successive estimates, find the value of the derivative to an accuracy of 3 decimal places. [8]

4 Show that a Newton-Raphson iteration to find the cube root of 25 is

$$x_{r+1} = x_r - \frac{x_r^3 - 25}{3x_r^2}.$$

Perform three steps of this iteration, beginning with $x_0 = 4$. Show, by considering the differences between successive iterates, that the convergence is faster than first order. [8]

5 (i) Find $\sin 86^{\circ} - \sin 85^{\circ}$ to the accuracy given by your calculator. [1]

(ii) A simple spreadsheet works to an accuracy of 6 significant figures. All intermediate answers used in calculations are rounded to 6 significant figures.

Write down the values of $\sin 86^{\circ}$ and $\sin 85^{\circ}$ as given by this spreadsheet. Hence find the value the spreadsheet gives for $\sin 86^{\circ} - \sin 85^{\circ}$. [3]

- (iii) You are now given that $\sin 86^{\circ} \sin 85^{\circ} = 2 \cos 85.5^{\circ} \sin 0.5^{\circ}$. Find the value the spreadsheet gives for this expression.
- (iv) Use your working from parts (ii) and (iii) to explain how two expressions that are mathematically identical can nevertheless evaluate differently. [2]

© OCR 2008 4776/01 Jun08

Section B (36 marks)

6 The integral $\int_{1}^{3} \sqrt{1 + \sin x} \, dx$, where x is in radians, is to be evaluated numerically.

(i) Copy and complete the following table.

h	Mid-point rule estimate	Trapezium rule estimate
2	$M_1 = 2.763547$	$T_1 =$
1	$M_2 =$	$T_2 =$
0.5	$M_{\Lambda} =$	$T_{A} =$

[7]

[7]

[5]

(ii) Show that the differences between successive mid-point rule estimates reduce by a factor of about 4.

State a result about the differences between successive trapezium rule estimates. [4]

(iii) Now let $S_1 = \frac{1}{3}(2M_1 + T_1)$, with S_2 and S_4 defined similarly.

Calculate S_1 , S_2 , S_4 and the differences $S_2 - S_1$, $S_4 - S_2$. By considering these differences, give the value of the integral to the accuracy that appears justified. [7]

- 7 The equation $x^2 = 4 + \frac{1}{x}$ has three roots.
 - (i) Show graphically that the equation has exactly one root for x > 0. Find the integer a such that this positive root lies in the interval (a, a + 1).

Use the fixed-point iteration

$$x_{r+1} = \sqrt{4 + \frac{1}{x_r}}$$
 (*)

to determine the positive root correct to 4 decimal places.

(ii) The equation also has two negative roots. Without doing any calculations, explain why the iteration (*) cannot be used to find these negative roots.

Use the fixed-point iteration

$$x_{r+1} = -\sqrt{4 + \frac{1}{x_r}}$$
 (**)

to find a negative root near to x = -2 correct to 4 decimal places.

(iii) The third root of the equation lies in the interval (-1, 0). Show that the iteration (**) used in part (ii) will not converge to this third root. Use another fixed point iteration to find the third root correct to 4 decimal places.

© OCR 2008 4776/01 Jun08

4776 Numerical Methods

1	x f(x)	3 0.5	3.5 -0.8			x (-0.8) - 3.5 x .192308 (3	0.5) / (-0.8 - 0.5) .192, 3.19)	[M1A1A1] [A1]
				(-) mpe is	3.5 - 3.192	2308 = 0.3076	02 (0.308, 0.31)	[M1A1]
								[TOTAL 6]
2	1 3 5	2 1 5	-1 4	5				
	7 9	k 2	k-5 2-k	k-9 7-2k	k-14 16-3k			[M1A1A1A1]
		16-3k = k-1	14 h	ence k = 7	.5			[M1A1] [TOTAL 6]
3	h 0.2 0.1 0.05	f(2+h) .494507 .323418 .241636	f(2-h) .867869 .010586 .085281		f '(2) .566594 .564163 .563555	-0.00243 -0.00061		derivatives [M1A1A1A1] differences [M1A1]
		s reducing bure to 3 dp.	oy a factor	4 so next	estimate al	oout 1.56340.		[M1] [B1] [TOTAL 8]
4	$f(x) = x^3 - 25$ $x_{r+1} = x_r - ($	5 x _r ³ -25)/3x _r ²	$f'(x) = 3x^2$	(a.g.)				[M1A1A1]
	r X _r diffs ratios differences	0 4 s reducing a	1 3.1875 -0.8125 at an incre	2 .945197 -0.2423 .298219 easing rate	3 2.92417 -0.02103 .086783 (hence fas	ter than first o	rder)	[M1A1] [B1] [B1] [E1] [TOTAL 8]
5 (i)	0.001 369	352	(accept 0.	.001 369 4))			[B1]
(ii)	$\sin 86^{\circ} = 0$ 564 $\sin 86^{\circ} - \sin 80$	0.997 in $86^{\circ} = 0.06$	01 369	sin 85° = 1	0.996			[B1B1] [A1]
(iii)	2 x 0.0784 = 0.00136	935 x 0.008	3 726 54					[M1] [A1]
(iv)					•	(may be implanted the major in	,	[E1] [E1]
								[TOTAL 8]

6 (i)	1	M T 2.763547 2.425240 2.677635 2.594393 2.656743 2.636014		mid-point: trapezium:	[M1A1A1] [M1A1A1A 1] [subtotal 7]	
(ii)	M:	2.763547 diffs 2.677635 -0.08591 2.656743 -0.02089	reducing by a factor 4 (may be imp	olied)	[M1A1E1]	
		Differences in T reduce by a factor 4, too				
(iii)		2.656743 2.636014	2.649888 -0.00089033 2.649833 -0.000054333 lucing fast e.g by a factor of (abou	S values: diffs ut) 16	[M1] [A1A1] [A1] [E1]	
		r about 2.649830	[E1] [A1] [subtotal 7]			
					[TOTAL 18]	
7 (i)	Eg: grap		[G2] [B1]			
	r x _r	0 1 2.5 2.097618 2.1149 secure to 4		5 2.114907	[M1A1A1] [A1] [subtotal 7]	
(ii)	The itera	[E1]				
	r X _r	-	-1.86158 -1.86087 -1.86081	~	[M1A1A1] [A1] [subtotal 5]	
(iii)	Eg	x _r -0.5	1 2 3 -1.41421 -1.81463 -1.85713 equired root (converging to previous	-1.86052	[M1A1]	
	Eg	$x_{r+1} = 1 / (x_r^2 - 4)$			[M1]	
	r X _r		-0.25452 -0.25412 -0.2541	5 -0.2541	[M1A1] [A1] [subtotal 6]	
					[TOTAL 18]	