

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4776

Numerical Methods

Monday 19 JUNE 2006 Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- · The total number of marks for this paper is 72.

Section A (36 marks)

In the diagram below, X is an approximation to x with error h. Also f(X) is an approximation to f(x) with error k. Show, by considering the tangent at x, that $k \approx hf'(x)$.

Use this result, with $f(x) = \sqrt{x}$, to estimate the maximum possible error in \sqrt{X} when X = 2.5 correct to 1 decimal place. [7]

2 Show that the equation

$$x^5 - 5x + 1 = 0$$

has a root in the interval [0, 1].

Apply two iterations of the false position method to obtain an estimate of this root. Give your answer to 3 decimal places.

Determine whether or not your answer is correct to 3 decimal places. [8]

3 The integral $I = \int_0^2 \sqrt{1+2^x} dx$ is to be found numerically.

Obtain the estimates given by the mid-point rule and the trapezium rule with h = 2. Use these values to obtain a Simpson's rule estimate of I.

Given that the mid-point rule estimate with h = 1 is 3.510 411, obtain as efficiently as possible a second trapezium rule estimate and a second Simpson's rule estimate.

Give the value of *I* to the accuracy that appears justified. [8]

4 Given the data in the table below, find three estimates of f'(2).

h	h 0		0.01	0.001
f(2+h)	1.4427	1.3478	1.4324	1.4416

Discuss briefly the likely accuracy of these estimates.

[6]

5 Show, by means of a difference table, that the function g(x) tabulated below is approximately but not exactly quadratic.

х	1	2	3	4	5	6
g(x)	3.2	12.8	28.4	50.2	77.9	111.6

Use Newton's forward difference formula to estimate the value of g(1.5).

[7]

Section B (36 marks)

6 (i) Show that the equation

$$x^2 = \tan x \tag{*}$$

(where x is in radians) has a root in the interval [4.6, 4.7].

Use the bisection method with starting values 4.6 and 4.7 to find this root with maximum possible error 0.0125. [9]

- (ii) You are now given that equation (*) also has a root in the interval [7.7, 7.9]. Show that 7.7 and 7.9 are *not* suitable starting points for the bisection method. Explain with the aid of a sketch graph how this situation arises.
- (iii) Using only the fact that equation (*) has a root in the interval [7.7, 7.9], write down the best possible estimate of the root. Determine whether or not this estimate is correct to 1 decimal place.

4776 June 2006 **[Turn over**

7 The following values of the function f(x) are known.

х	1	2	4
f(x)	-3	8	36

It is required to estimate D = f'(2) and $I = \int_{1}^{4} f(x) dx$.

(i) Use the forward difference method to estimate D.

Use the trapezium rule to obtain the best possible estimate of I.

[4]

(ii) Use Lagrange's method to find the quadratic that passes through the given points.

Hence find new estimates of D and I.

[11]

(iii) Comment on the extent to which the estimates in part (i) agree with those in part (ii). [3]

1	Sketch, w	vith explana	tion.					[M1A1E1]
	f'(x) = 1/(2√x)						[M1A1]
	hence mp	e is approx	(0.05 / (2√2 0.01597	.5) =	0.01581 1	(0.016) 0.01565		[M1A1]
	(or 0.05 /	2√2.45 =	2	or 0.05 / 2	√2.55 =	6)	[TOTAL 7]
2	x f(x)	0 1	1 -3	change of	sign so root			[M1A1]
	a 0	b 1	f(a) 1	f(b) -3	x 0.25 0.20015	f(x) -0.24902		[M1A1]
	0	0.25 0.1995	1 0.2005	-0.24902	6 0.200 to 3	-0.00046 dp		[A1] [A1]
	x f(x)	0.1993	-0.00218	sign chanç	ge so root is	correct to 3	dp	[M1A1]
								[TOTAL 8]
3	h 2	M 3.46410 2 3.51041	⊤ 3.65028 2 3.55719	S 3.52616 2 3.52600				values
	1	1	2	3.526(0) a	ppears to be	e justified		[A1A1A1A1] evidence of efficient formulae for T and S [M1M1] [A1]
								[TOTAL 8]
4	h f(2 + h) est f '(2)	0 1.4427	0.1 1.3478 -0.949	0.01 1.4324 -1.03	0.001 1.4416 -1.1			[M1A1A1A1]
				s h is reduc ate is most a				[E1] [E1]
								[TOTAL 6]
5	x 1 2	g(x) 3.2 12.8	∆g 9.6 15.6	$\Delta^2 g$ 6	second dif	ferences ne	arly	table [M1A1]
	3 4 5 6	28.4 50.2 77.9 111.6	21.8 27.7 33.7	5.9 6		mately quad	Iratic	[E1]

g(1.5) = 3.2 + 0.5*9.6 + 0.5*(-0.5)*6/2 = 7.25

[M1A1A1A1]

[TOTAL 7]

6 (i)	x	4.6	4.7			NB: 3 pi /2 =4 reqd)	1.71 (not	
	x ² -tan(x)	12.2998 3	-58.6228	change of	sign, so root	t		[M1A1]
	a 4.6	b 4.7	sign f(a) 1	sign f(b) -1	x 4.65	sign f(x)	mpe 0.05	[M1A1]
	4.65	4.7	1	-1	4.675	-1	0.025 0.012	[M1A1]
	4.65	4.675	1	-1	4.6625 root is 4.66	325 with mpe	5	[M1A1]
					0.0125			[A1] [subtotal 9]
(ii)	x	7.7 52.8471	7.9 84.1251					
	x ² -tan(x)	32.0471	1	no change	of sign, so	no evidence	of root	[M1A1]
	Sketch shows So x ² curve				7.854			[G2] [E1] [subtotal 5]
(iii)	best possib	le estimate i	s 7.8					[A1]
	x x ² -tan(x)	7.75 50.4801	7.85 -189.529	change of	sign so 7.8 i	s correct to	1 dp	[M1] [A1E1] [subtotal 4]
								[TOTAL 18]
7 (i)	D = (36 - 8) I = 0.5 (-3 +	. ,						[M1A1] [M1A1] [subtotal 4]
(ii)		(x+8) - 4 (x ² -)(2-4) + 36 (x-1)(x-2)/(4-	1)(4-2)	[M1A1A1A1] [A1] [A1]
	q'(x) = 2x +	8 so D = 12						[M1A1]
	$\int q(x) dx = x$	x ³ /3 + 4x ² - 1	2x so I = 45	5				[M1A1A1] [subtotal 11]
(iii)	Large relative Small relative To be expected.	ve difference	e in estimate	es of I		n differentiati	ion	[E1] [E1] [E1] [subtotal 3]
								[TOTAL 18]