OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4776

Numerical Methods
Monday 19 JUNE $2006 \quad$ Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 In the diagram below, X is an approximation to x with error h. Also $\mathrm{f}(X)$ is an approximation to $\mathrm{f}(x)$ with error k. Show, by considering the tangent at x, that $k \approx h \mathrm{f}^{\prime}(x)$.

Use this result, with $\mathrm{f}(x)=\sqrt{x}$, to estimate the maximum possible error in \sqrt{X} when $X=2.5$ correct to 1 decimal place.

2 Show that the equation

$$
x^{5}-5 x+1=0
$$

has a root in the interval $[0,1]$.
Apply two iterations of the false position method to obtain an estimate of this root. Give your answer to 3 decimal places.

Determine whether or not your answer is correct to 3 decimal places.
3 The integral $I=\int_{0}^{2} \sqrt{1+2^{x}} \mathrm{~d} x$ is to be found numerically.
Obtain the estimates given by the mid-point rule and the trapezium rule with $h=2$. Use these values to obtain a Simpson's rule estimate of I.

Given that the mid-point rule estimate with $h=1$ is 3.510411 , obtain as efficiently as possible a second trapezium rule estimate and a second Simpson's rule estimate.

Give the value of I to the accuracy that appears justified.

3
4 Given the data in the table below, find three estimates of $f^{\prime}(2)$.

h	0	0.1	0.01	0.001
$\mathrm{f}(2+h)$	1.4427	1.3478	1.4324	1.4416

Discuss briefly the likely accuracy of these estimates.

5 Show, by means of a difference table, that the function $\mathrm{g}(x)$ tabulated below is approximately but not exactly quadratic.

x	1	2	3	4	5	6
$\mathrm{~g}(x)$	3.2	12.8	28.4	50.2	77.9	111.6

Use Newton's forward difference formula to estimate the value of $g(1.5)$.

Section B (36 marks)

6 (i) Show that the equation

$$
\begin{equation*}
x^{2}=\tan x \tag{*}
\end{equation*}
$$

(where x is in radians) has a root in the interval [4.6, 4.7].
Use the bisection method with starting values 4.6 and 4.7 to find this root with maximum possible error 0.0125.
(ii) You are now given that equation $(*)$ also has a root in the interval [7.7, 7.9]. Show that 7.7 and 7.9 are not suitable starting points for the bisection method. Explain with the aid of a sketch graph how this situation arises.
(iii) Using only the fact that equation $\left(^{*}\right.$) has a root in the interval [7.7, 7.9], write down the best possible estimate of the root. Determine whether or not this estimate is correct to 1 decimal place.

7 The following values of the function $\mathrm{f}(x)$ are known.

x	1	2	4
$\mathrm{f}(x)$	-3	8	36

It is required to estimate $D=\mathrm{f}^{\prime}(2)$ and $I=\int_{1}^{4} \mathrm{f}(x) \mathrm{d} x$.
(i) Use the forward difference method to estimate D.

Use the trapezium rule to obtain the best possible estimate of I.
(ii) Use Lagrange's method to find the quadratic that passes through the given points.

Hence find new estimates of D and I.
(iii) Comment on the extent to which the estimates in part (i) agree with those in part (ii).
$f^{\prime}(x)=1 /(2 \sqrt{ } x)$
[M1A1]
[M1A1]
hence mpe is approx $0.05 /(2 \sqrt{ } 2.5)=$
$\begin{array}{cc}0.01581 & \\ 1 & (0.016)\end{array}$
(or $0.05 / 2 \sqrt{ } 2.45=\quad 2 \quad$ or $0.05 / 2 \sqrt{ } 2.55=\quad 6 \quad 0.01565$)

2

x	0	1	
$f(x)$	1	-3	change of sign so root

[M1A1]

[TOTAL 8]

3

h	M	T	S
	3.46410	3.65028	3.52616
2	2	2	2
	3.51041	3.55719	3.52600
1	1	2	4

values
[A1A1A1A1A1] evidence of efficient formulae for T and S
[M1M1]
3.526(0) appears to be justified
[A1]
[TOTAL 8]
4

h	0	0.1	0.01	0.001
$\mathrm{f}(2+h)$	1.4427	1.3478	1.4324	1.4416
est f		-0.949	-1.03	-1.1
${ }^{\prime}(2)$				

[M1A1A1A1]
Clear loss of significant figures as h is reduced
Impossible to know which estimate is most accurate
$\left.\begin{array}{rrrrrr}x & g(x) & \Delta g & \Delta^{2} g & & \text { table } \\ 1 & 3.2 & 9.6 & 6 & & \text { second differences nearly } \\ 2 & & & & & \\ & & 12.8 & 15.6 & 6.2 & \text { constant }\end{array}\right]$

$$
g(1.5)=3.2+0.5^{*} 9.6+0.5^{*}(-0.5)^{*} 6 / 2=7.25
$$

6 (i) x
$x^{2}-\tan (x)$

a	b	$\operatorname{sign} f(a)$	$\operatorname{sign} f(b)$	x	$\operatorname{sign} f(x)$	mpe
4.6	4.7	1	-1	4.65	1	0.05
4.65	4.7	1	-1	4.675	-1	0.025
				0.012		
4.65	4.675	1	-1	4.6625	5	
				root is 4.6625 with mpe		

[M1A1]
NB: 3 pi $/ 2=4.71$ (not
reqd) 12.2998
4.7
[M1A1]
[M1A1]
[M1A1]
[A1]
[subtotal 9]
(ii) x
7.7
7.9
$x^{2}-\tan (x)$
52.8471
84.1251
$\begin{array}{lr}3 & 1\end{array}$
Sketch showing asymptote for $\tan (x)$ at $5 \mathrm{pi} / 2=7.854$
[M1A1]
[G2]
So x^{2} curve is above $\tan (x)$ at both end points
[E1]
[subtotal 5]
(iii) best possible estimate is 7.8
$\begin{array}{lrrl}x & 7.75 & 7.85 & \\ x^{2}-\tan (x) & 50.4801 & -189.529\end{array}$ change of sign so 7.8 is correct to 1 dp
[M1]
[A1E1]

[subtotal 4]

[TOTAL 18]
7
(i)
(i) $\quad D=(36-8) /(4-2)=14$
[M1A1]
[M1A1]
[subtotal 4]
(ii) $\quad \mathrm{q}(\mathrm{x})=-3(\mathrm{x}-2)(\mathrm{x}-4) /(1-2)(1-4)+8(\mathrm{x}-1)(\mathrm{x}-4) /(2-1)(2-4)+36(\mathrm{x}-1)(\mathrm{x}-2) /(4-1)(4-2)$
[M1A1A1A1]
$=-\left(x^{2}-6 x+8\right)-4\left(x^{2}-5 x+4\right)+6\left(x^{2}-3 x+2\right)$

$$
=x^{2}+8 x-12
$$

[A1]
$q^{\prime}(x)=2 x+8$ so $D=12$
[M1A1]
[M1A1A1]
$\int q(x) d x=x^{3} / 3+4 x^{2}-12 x$ so $I=45$
[subtotal 11]
(iii) Large relative difference between estimates of D
[E1]
Small relative difference in estimates of I
[E1]
To be expected as integration is a more stable process than differentiation
[E1]
[subtotal 3]

