OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4776

Numerical Methods
Wednesday 25 JANUARY $2006 \quad$ Morning 1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 Show that if

$$
X=x(1+r)
$$

then

$$
\frac{1}{X} \approx \frac{1}{x}(1-r)
$$

for sufficiently small r.
Explain carefully what this means in terms of relative errors. Illustrate your answer in the case $X=10, x=9.8$.

2 The equation

$$
\begin{equation*}
\frac{1}{x}=\sin x \tag{*}
\end{equation*}
$$

(where x is in radians) has two roots, α and β, in the interval $0<x<\pi$.
(i) Given that $\alpha \approx 1$, use an iteration based on a simple rearrangement of (*) to find α correct to 3 significant figures.
(ii) Verify that $\beta=2.773$ is correct to 3 decimal places.

3 The integral $I=\int_{1}^{3} \mathrm{f}(x) \mathrm{d} x$ is being evaluated numerically. The following values have been obtained.

h	mid-point rule	trapezium rule
2	2.60242	2.44866
1	2.56982	

Obtain 2 further trapezium rule estimates of I.
Obtain 2 Simpson's rule estimates of I.
Give a value for I to the accuracy that appears justified.

4 The function $\mathrm{f}(x)$ has the values shown in the table.

x	1	2	3	4	5
$\mathrm{f}(x)$	3.0	4.5	5.4	6.2	6.7

(i) Obtain two estimates of the gradient $\mathrm{f}^{\prime}(3)$ using the central difference method.
(ii) Given that the values of x are exact but that the values of $\mathrm{f}(x)$ are rounded to 1 decimal place, determine a range of possible values of $\mathrm{f}^{\prime}(3)$ from each estimate. Comment on your results.

Give a value for $\mathrm{f}^{\prime}(3)$ to the accuracy that appears justified.

5 The function $\mathrm{g}(x)$ is quadratic. The following values are known.

x	1	3	4
$\mathrm{~g}(x)$	4	1	11

Use Lagrange's method to determine $\mathrm{g}(2)$.
Check your answer by drawing up a difference table for $\mathrm{g}(x)$.

Section B (36 marks)

6 (i) Show that the curve $y=x^{10}-10 x+1$ has exactly one turning point.
Show that the equation

$$
\begin{equation*}
x^{10}-10 x+1=0 \tag{*}
\end{equation*}
$$

has exactly two real roots and that these roots both lie in the interval $[0,2]$.
(ii) Use the Newton-Raphson method to find the larger root correct to 4 decimal places.
(iii) Obtain another iteration based on a rearrangement of $\left(^{*}\right)$ and hence, without using a calculator, show that the smaller root is almost exactly $0.1+0.1^{11}$.

7 The number e satisfies the relationship $\log _{\mathrm{e}} N=\int_{1}^{N} \frac{1}{x} \mathrm{~d} x$. Hence it follows, for example, that $\log _{\mathrm{e}} 5=\int_{1}^{5} \frac{1}{x} \mathrm{~d} x$.
(i) Use the mid-point rule to show that $\log _{\mathrm{e}} 5 \approx \frac{1}{1.5}+\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{4.5}$.

Given that, correct to 8 decimal places, $\log _{\mathrm{e}} 5=1.60943791$, find the error in the approximation (*).
(ii) Correct to 8 decimal places, $\log _{\mathrm{e}} 2=0.69314718$. Hence or otherwise obtain the values of $\log _{e} 10, \log _{e} 20, \log _{e} 40$ and $\log _{e} 80$, giving your answers correct to 6 decimal places.

It is known that, as N increases, the value of the expression

$$
\log _{\mathrm{e}} N-\left(\frac{1}{1.5}+\frac{1}{2.5}+\frac{1}{3.5}+\ldots+\frac{1}{(N-0.5)}\right)
$$

tends to a constant k.
(iii) Use the information in the table to obtain 4 estimates, $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, of k. Give these estimates to 6 decimal places.

N	10	20	40	80
$\frac{1}{1.5}+\frac{1}{2.5}+\frac{1}{3.5}+\ldots+\frac{1}{(N-0.5)}$	2.266511	2.959346	3.652416	4.345543

(iv) Find the differences $\alpha_{2}-\alpha_{1}, \alpha_{3}-\alpha_{2}, \alpha_{4}-\alpha_{3}$. Show that the differences reduce by a factor of approximately 4 as N is doubled. Hence obtain the best estimate you can of k, giving your answer to an appropriate number of significant figures.

1 Use binomial expansion of $(1+r)^{-1}$ or sum of GP, or $1-r^{2}$ with r^{2} taken to be zero to obtain given result.
[M1A1]
Relative error in reciprocal is of same magnitude but opposite sign
[E1E1]
E.g. $\quad 10$ is approx 2% greater than 9.8
$1 / 10=0.1$ is approx 2% less than $1 / 9.8=0.10204$
$\left.\begin{array}{rrrrrrrr}\mathrm{r} & 0 & 1 & 2 & 3 & 10 & 11 & 12\end{array}\right]$
root is 1.11 to 3 sf .

(ii) | x | | |
| :---: | :---: | :---: |
| $1 / \mathrm{x}-$ | 2.7725 | 2.7735 |

$\sin (\mathrm{x}) \quad-8.4 \mathrm{E}-05 \quad 0.000719$ change of sign, so 2.773 correct to 3 dp
[M1A1A1]
[subtotal

3	h	M	T
2	2.60242	2.44866	
	1	2.56982	

$\mathrm{T} 2=(\mathrm{M} 1+\mathrm{T} 1) / 2=$	2.52554
$\mathrm{~T} 4=(\mathrm{M} 2+\mathrm{T} 2) / 2=$	2.54768
$\mathrm{~S} 1=(2 \mathrm{M} 1+\mathrm{T} 1) / 3$	
$=$	2.55117
$\mathrm{~S} 2=(2 \mathrm{M} 2+\mathrm{T} 2) / 3$	
$=$	

[M1A1]
[A1]
[M1A1]
$\mathrm{I}=2.56$ (or 2.555) is justified

x	1	2	3	4	5
$\mathrm{f}(x)$	3	4.5	5.4	6.2	6.7

	(i)		(ii)		
h	$\mathrm{f}^{\prime}(3)$	\min	\max		
2	0.925	0.9	0.95		
1	0.85	0.8	0.9		

Larger h gives smaller interval (or 0.9 is the only common value)
$\mathrm{f}^{\prime}(3)=0.9$ is the value that seems justified.
(Or 0.8 seems to be the limit the process is tending to. [E1E1])

$$
\begin{array}{rrrrr}
x & 1 & 3 & 4 & \\
\mathrm{~g}(x) & 4 & 1 & 11 & \\
& \mathrm{~L}(2)= & 4(2-3)(2-4) /(1-3)(1-4)+1(2-1)(2-4) /(3-1)(3-4)+11(2-1)(2-3) /(4-1)(4-3) \\
= & -1^{1 / 3} 3 \\
\mathrm{x} & \mathrm{~g}(\mathrm{x}) & \Delta \mathrm{g}(\mathrm{x}) & \Delta^{2} \mathrm{~g}(\mathrm{x}) & \\
1 & 4 & -5.33333 & 7.666666 & \\
& - & & & \\
2 & 1.33333 & 2.333333 & 7.666667 & \text { 2nd differences constant } \\
3 & 1 & 10 & & \text { so correct for a quadratic } \\
4 & 11 & &
\end{array}
$$

6 (i) $y^{\prime}=10 x^{9}-10=0$ only when $x=1$, hence at most one turning point tenth degree polynomial is positive as x tends to plus or minus infinity (hence exactly one turning point) (or other methods)

x	0	1	2
$\mathrm{f}(\mathrm{x})$	1	-8	1005

[M1A1]
changes of sign so roots in [0,1] and $[1,2]$
since only one turning point cannot be any more roots
[E1]
[E1]
[subtotal 7]
(ii) NR: $\quad \mathrm{x}_{\mathrm{r}+1}=\mathrm{x}_{\mathrm{r}}-\left(\mathrm{x}_{\mathrm{r}}{ }^{10}-10 \mathrm{x}_{\mathrm{r}}+1\right) /\left(10 \mathrm{x}_{\mathrm{r}}{ }^{9}-10\right)$
[M1A1A1]
[M1A1A1] [subtotal 6]
[E1]

