

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4776

Numerical Methods

Wednesday 25 JANUARY 2006 Mc

Morning

1 hour 30 minutes

Additional materials:

8 page answer booklet Graph paper

MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

Section A (36 marks)

1 Show that if

$$X = x(1+r)$$

then

$$\frac{1}{X} \approx \frac{1}{r}(1-r)$$

for sufficiently small r.

Explain carefully what this means in terms of relative errors. Illustrate your answer in the case X = 10, x = 9.8.

2 The equation

$$\frac{1}{x} = \sin x \tag{*}$$

(where x is in radians) has two roots, α and β , in the interval $0 < x < \pi$.

- (i) Given that $\alpha \approx 1$, use an iteration based on a simple rearrangement of (*) to find α correct to 3 significant figures. [4]
- (ii) Verify that $\beta = 2.773$ is correct to 3 decimal places. [3]
- 3 The integral $I = \int_{1}^{3} f(x) dx$ is being evaluated numerically. The following values have been obtained.

h	mid-point rule	trapezium rule
2	2.602 42	2.448 66
1	2.569 82	

Obtain 2 further trapezium rule estimates of *I*.

Obtain 2 Simpson's rule estimates of *I*.

Give a value for *I* to the accuracy that appears justified.

4 The function f(x) has the values shown in the table.

х	1	2	3	4	5
f(x)	3.0	4.5	5.4	6.2	6.7

- (i) Obtain two estimates of the gradient f'(3) using the central difference method. [3]
- (ii) Given that the values of x are exact but that the values of f(x) are rounded to 1 decimal place, determine a range of possible values of f'(3) from each estimate. Comment on your results.

Give a value for f'(3) to the accuracy that appears justified. [5]

5 The function g(x) is quadratic. The following values are known.

X	1	3	4
g(x)	4	1	11

Use Lagrange's method to determine g(2).

Check your answer by drawing up a difference table for g(x).

Section B (36 marks)

6 (i) Show that the curve $y = x^{10} - 10x + 1$ has exactly one turning point.

Show that the equation

$$x^{10} - 10x + 1 = 0 \tag{*}$$

[8]

has exactly two real roots and that these roots both lie in the interval [0, 2]. [7]

- (ii) Use the Newton-Raphson method to find the larger root correct to 4 decimal places. [6]
- (iii) Obtain another iteration based on a rearrangement of (*) and hence, without using a calculator, show that the smaller root is almost exactly $0.1 + 0.1^{11}$. [5]

4776 January 2006 [Turn over

- 7 The number e satisfies the relationship $\log_e N = \int_1^N \frac{1}{x} dx$. Hence it follows, for example, that $\log_e 5 = \int_1^5 \frac{1}{x} dx$.
 - (i) Use the mid-point rule to show that $\log_e 5 \approx \frac{1}{1.5} + \frac{1}{2.5} + \frac{1}{3.5} + \frac{1}{4.5}$. (*)

Given that, correct to 8 decimal places, $\log_e 5 = 1.60943791$, find the error in the approximation (*). [5]

(ii) Correct to 8 decimal places, $\log_e 2 = 0.69314718$. Hence or otherwise obtain the values of $\log_e 10$, $\log_e 20$, $\log_e 40$ and $\log_e 80$, giving your answers correct to 6 decimal places. [3]

It is known that, as N increases, the value of the expression

$$\log_e N - \left(\frac{1}{1.5} + \frac{1}{2.5} + \frac{1}{3.5} + \dots + \frac{1}{(N-0.5)}\right)$$

tends to a constant k.

(iii) Use the information in the table to obtain 4 estimates, α_1 , α_2 , α_3 , α_4 , of k. Give these estimates to 6 decimal places.

N	10	20	40	80
$\frac{1}{1.5} + \frac{1}{2.5} + \frac{1}{3.5} + \dots + \frac{1}{(N-0.5)}$	2.266511	2.959346	3.652416	4.345 543

[3]

(iv) Find the differences $\alpha_2 - \alpha_1$, $\alpha_3 - \alpha_2$, $\alpha_4 - \alpha_3$. Show that the differences reduce by a factor of approximately 4 as N is doubled. Hence obtain the best estimate you can of k, giving your answer to an appropriate number of significant figures. [7]

MEI Numerical Methods 4776

1	Use binomial expansion of $(1 + r)^{-1}$ or sum of GP, or $1 - r^2$ with r^2 taken to be zero to obtain given result. Relative error in reciprocal is of same magnitude but opposite sign E.g. 10 is approx 2% greater than 9.8							[M1A1] [E1E1]	
	L.g.				1/9.8 = 0.10	0204			[M1A1] [TOTAL 6]
2(i)	$x_{r+1} = 1/\sin$		1	2	3	10	11	12	[M1]
	r X _r	0 1 root is 1.1	1.188395	1.077852	1.135147	1.113855	11 1.114323	1.114067	[M1A1] [A1] [subtotal
(ii)	X 1 /	2.7725	2.7735						4]
	$\frac{1/x}{\sin(x)}$	-8.4E-05	0.000719	change of	sign, so 2.7′	73 correct to	3 dp		[M1A1A1] [subtotal 3] [TOTAL 7]
3	h 2 1	M 2.60242 2.56982	T 2.44866	T2 = (M1 T4 = (M2 S1 = (2M1 = S2 = (2M2 =	+ T2)/2 = 1 + T1)/3	2.52554 2.54768 2.55117 2.55506			[M1A1] [A1] [M1A1] [A1]
				I = 2.56 (o	or 2.555) is j	ustified			[A1] [TOTAL 7]
4	f(x)	1 3	2 4.5	3 5.4	4 6.2	5 6.7			
	h 2 1	(i) f '(3) 0.925 0.85	(ii min 0.9 0.8	max 0.95 0.9					(i) [M1A1A1] (ii) [M1A1A1]
		is the value	that seems	justified.	e only cominding to. [E				[E1] [E1] [TOTAL 8]

7 (i)	Mid-point	t rule with 1 1.60943	h=1 and 4 st	rips to obtai	n given resu	ılt.		[M1A1]
	$log_e(5) = Mid-pt = $	8 1.57460 3	error is (-	0.034835				[M1A1A1] [subtotal 5]
(ii)	N	10 2.30258	20	40	80			
	$log_e(N)$	5	2.995732	3.688879	4.382027			[M1A1A1] [subtotal 3]
(iii)(iv)	<i>N</i> 10	Mid-pt 2.26651	ln(N)	est k 0.036074	diffs	ratio of diffs		estimates
	20	1 2.95934	2.302585	0.036386	0.000212			[M1A1A1]
	40	6 3.65241 6	2.9957323.688879	0.036463	0.000312 7.72E-05	0.247231	diffs	[subtotal 3] [M1A1]
	80	4.34554	4.382027	0.036484	2.02E-05	0.261472	ratio	[M1A1]
		extrapola	ting:	0.036489	5.05E-06	(approx 0.25)		
		(or equiva		0.036490 0.036490	1.26E-06 3.15E-07			[M1A1]
				0.03649(0)) seems secu	ıre		[A1] [subtotal 7]
								[TOTAL 18]