

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4776

Numerical Methods

Wednesday

25 MAY 2005

Afternoon

1 hour 30 minutes

Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- · Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.

Section A (36 marks)

In the table below the values of x are exact and the values of the function f(x) are correct to 4 decimal places.

x	2	2.1	2.2	2.3	2.4	
f(x)	4.0000	4.2871	4.5948	4.9246	5.2780	

- (i) Obtain an estimate of the gradient at x = 2 using the forward difference formula with h = 0.4. Find two further estimates by successively halving h.
- (ii) By considering how the differences between these three estimates reduce, obtain a better estimate, giving your answer to an appropriate degree of accuracy. [4]
- 2 (i) Explain by means of a simple example the difference between rounding and chopping when numbers are represented in a calculator or computer. [1]
 - (ii) A cheap calculator stores numbers in the range (0, 1) in decimal form rounded to 7 decimal places.

The number $\frac{2}{3}$ is stored in decimal form. Write down the absolute error in the stored value.

Write down the maximum possible error in the stored value of x, where 0.1 < x < 1. Find the maximum possible relative error in the stored value of x.

3 Show that the equation

$$x^5 - 3x - 2 = 0$$

has a root, α , in the interval 1.4 < x < 1.5.

Use the secant method with $x_0 = 1.4$ and $x_1 = 1.5$ to find x_2, x_3, x_4 .

Give a value for α to the accuracy that is appropriate.

[8]

4 Obtain estimates of the value of

$$I = \int_2^4 \sqrt{(1+\sqrt{x})} \, \mathrm{d}x$$

using the mid-point rule and the trapezium rule, each with h=2. Give your answers to 6 decimal places.

Hence obtain a Simpson's rule estimate of I.

You are now given that the Simpson's rule estimates of I obtained as above but starting with h=1 and h=0.5 are 3.299 231 and 3.299 238. By considering the differences in the three Simpson's rule estimates, obtain the best estimate you can. Give your answer to an appropriate number of significant figures. [8]

5 The series

$$1 + (\frac{1}{2})^2 + (\frac{1}{3})^2 + \dots + (\frac{1}{10000})^2$$

is being summed in a computer program that works to a precision of 7 significant figures.

When the terms are summed in the order shown, the value obtained is 1.644 725. When the same terms are summed in reverse order, the value obtained is 1.644 834.

Explain why computations of this type do not give exact answers.

Explain further why the two approaches used give different answers. State which of the answers is likely to be more accurate and explain why. [5]

Section B (36 marks)

6 (i) Copy and complete the following difference table as far as third differences.

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	
1	4	4			
2	1	-3	•		
3	4	3		•	
4	а	a-4		•	
5	76	76 - a			[4]
J	70				[4]

(ii) Given that f(x) is a cubic polynomial, show that a = 25.

Use Newton's forward difference interpolation formula to obtain f(x).

[8]

[3]

- (iii) Find, correct to 3 significant figures, the minimum value of f(x) for 1 < x < 5.
- (iv) The cubic polynomial f(x) could have been found using only the following data.

x	1	2	3	5
f(x)	4	1	4	76

Write down, but do not simplify, an expression for f(x) based on these data. [3]

7 (i) Sketch, on the same axes, the graphs with equations

$$y=3-x,$$

$$y = 4\cos x$$
,

where x is in radians and $0 \le x \le 2\pi$.

Hence show that the equation

$$3 - x = 4\cos x \tag{*}$$

has two roots, α and β with $\alpha < \beta$, in the interval $[0, 2\pi]$.

(ii) Use the iteration

$$x_{r+1} = \arccos\left(\frac{1}{4}(3 - x_r)\right)$$

to find the root α correct to 3 decimal places.

[4]

[3]

[5]

- (iii) By considering the ratio of the differences between the values of x_r , show that the iteration in part (ii) displays first order convergence. [3]
- (iv) Given that the derivative of $\cos x$ is $(-\sin x)$ when x is in radians, obtain the following Newton-Raphson iteration for equation (*).

$$x_{r+1} = x_r + \frac{3 - x_r - 4\cos x_r}{1 - 4\sin x_r}.$$

Use this iteration to find β correct to 4 decimal places.

(v) By considering the ratio of the differences between the values of x_r , show that the iteration in part (iv) displays convergence that is faster than first order. [3]

Mark Scheme

1(i)	h est f '(2)	0.4 3.195	0.2 2.974	0.1 2.871			M1A1A1A1	[4]
(ii)	differences		-0.221	-0.103			M1A1	
	differences approximately halving so extra Last figure unreliable so 2.77. Acc				extrapolate to $2.871 - 0.103 = 2.768$. Accept argument to 2.8 .			[4]
2 (i)	E.g. 2/3 rou	nded to 0.66	66 666 7, cho	opped to 0.	.666 666 6		E 1	[1]
(ii)	2/3 stored as mpe is 0.000 mpre is grea	0 000 05		Absolute	error 0.000 000 0	A1A1 A1 M1		
	mpre is 0.00	00 000 05 / 0).1 =	5 * 10^ -7	5E-07	M1A1	[6]	
3	x 1.4 1.5	f(x) -0.82176 1.09375	root in the	interval (1	.4, 1.5)		B 1	
		r 0	Xr 1.4	f(Xr) - 0.82176				
		1 2	1.5 1.4429	1.09375 - 0.07436			M1 M1A1	
		3	1.446535	0.00609			A1	
		4	1.446859	3.88E- 05			M1A1	
	Root at 1.44		eure.				B1	[8]
4	x 2 3 4	f(x) 1.553774 1.652892 1.732051		M = T = S =	(2*M + T) / 3 =	3.305783 3.285825 3.299130	M1A1 A1 M1A1	
5	Adding from	ns of this typ ag errors wil n large to sn n small to la	pe contain roll be different all loses progresses progr	ounding ent t when the ecision (the each number	rors two sums are core small number is er to contribute to	lost)	M1A1A1 E1 E1 E1 E1 E1	[8]

6(i)
$$x$$
 $f(x)$ $Af(x)$ $A^3f(x)$ $A^3f(x)$

-4 -5 shows

E1

[3]

two

roots

(ii)	E.g.: r Xr	0 1	1 1.04720	2 1.06077	3 1.06465	4 1.06576	5 1.06608	6 1.06617 M1A1A1	7 1.06620
	alpha = 1.06	66 correct to	3 decimal p	places				A1	[4]
(iii)	0 1 diffs ratio of diffs	1 1.04720 0.04720	2 1.06077 0.01357 0.28756	3 1.06465 0.00388 0.28615	4 1.06576 0.00111 0.28575	5 1.06608 0.00032 0.28564	6 1.06617 0.00009 0.28561	M1A1	
	ratios (appro	ox) constant	t so first ord	er converge	ence.			E 1	[3]
(iv)	Obtain N-R	iteration (b	eware printe	ed answer)				M1A1	
	E.g.: r Xr beta = 4.364	0 5 3 correct to	1 4.35177 4 decimal p	2 4.36435 places	3 4.36432	4 4.36432		M1A1 A1	[5]
(v)	0 5 diffs ratio of diffs	1 4.35177 -0.64823	2 4.36435 0.01258 -0.01940	3 4.36432 - 0.00002 - 0.00184	4 4.36432 0.00000 0.00000			M1A1	
	ratios getting (much) smaller so faster than first order							E1	[3]
									Total 18