

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4763

Mechanics 3

Monday 22 MAY 2006 Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g m s^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

1 (a) (i) Find the dimensions of power.

In a particle accelerator operating at power P, a charged sphere of radius r and density ρ has its speed increased from u to 2u over a distance x. A student derives the formula

$$x = \frac{28\pi r^3 u^2 \rho}{9P}.$$

- (ii) Show that this formula is not dimensionally consistent.
- (iii) Given that there is only one error in this formula for x, obtain the correct formula. [3]
- **(b)** A light elastic string, with natural length 1.6 m and stiffness 150 N m⁻¹, is stretched between fixed points A and B which are 2.4 m apart on a smooth horizontal surface.
 - (i) Find the energy stored in the string. [2]

A particle is attached to the mid-point of the string. The particle is given a horizontal velocity of 10 m s⁻¹ perpendicular to AB (see Fig. 1.1), and it comes instantaneously to rest after travelling a distance of 0.9 m (see Fig. 1.2).

(ii) Find the mass of the particle.

[5]

[3]

[5]

2 (a) A particle P of mass 0.6 kg is connected to a fixed point by a light inextensible string of length 2.8 m. The particle P moves in a horizontal circle as a conical pendulum, with the string making a constant angle of 55° with the vertical.

(i) Find the tension in the string. [2]

(ii) Find the speed of P. [4]

(b) A turntable has a rough horizontal surface, and it can rotate about a vertical axis through its centre O. While the turntable is stationary, a small object Q of mass 0.5 kg is placed on the turntable at a distance of 1.4 m from O. The turntable then begins to rotate, with a constant angular acceleration of $1.12 \, \text{rad s}^{-2}$. Let $\omega \, \text{rad s}^{-1}$ be the angular speed of the turntable.

Fig. 2

(i) Given that Q does not slip, find the components F_1 and F_2 of the frictional force acting on Q perpendicular and parallel to QO (see Fig. 2). Give your answers in terms of ω where appropriate. [4]

The coefficient of friction between Q and the turntable is 0.65.

(ii) Find the value of ω when Q is about to slip. [5]

(iii) Find the angle which the frictional force makes with QO when Q is about to slip.

4763 June 2006 **Turn over**

- 3 A fixed point A is 12m vertically above a fixed point B. A light elastic string, with natural length 3 m and modulus of elasticity 1323 N, has one end attached to A and the other end attached to a particle P of mass 15 kg. Another light elastic string, with natural length 4.5 m and modulus of elasticity 1323 N, has one end attached to B and the other end attached to P.
 - (i) Verify that, in the equilibrium position, $AP = 5 \,\mathrm{m}$. [3]

The particle P now moves vertically, with both strings AP and BP remaining taut throughout the motion. The displacement of P above the equilibrium position is denoted by xm (see Fig. 3).

Fig. 3

- (ii) Show that the tension in the string AP is 441(2-x) N and find the tension in the string BP.
 - [3]
- (iii) Show that the motion of P is simple harmonic, and state the period. [4]

The minimum length of AP during the motion is 3.5 m.

- (iv) Find the maximum length of AP. [1]
- (v) Find the speed of P when $AP = 4.1 \,\text{m}$.
- (vi) Find the time taken for AP to increase from 3.5 m to 4.5 m. [4]

- 4 The region bounded by the curve $y = \sqrt{x}$, the x-axis and the lines x = 1 and x = 4 is rotated through 2π radians about the x-axis to form a uniform solid of revolution.
 - (i) Find the *x*-coordinate of the centre of mass of this solid. [6]

From this solid, the cylinder with radius 1 and length 3 with its axis along the x-axis (from x = 1 to x = 4) is removed.

(ii) Show that the centre of mass of the remaining object, Q, has x-coordinate 3. [5]

This object Q has weight 96N and it is supported, with its axis of symmetry horizontal, by a string passing through the cylindrical hole and attached to fixed points A and B (see Fig. 4). AB is horizontal and the sections of the string attached to A and B are vertical. There is sufficient friction to prevent slipping.

Fig. 4

- (iii) Find the support forces, R and S, acting on the string at A and B
 - (A) when the string is light, [4]
 - (B) when the string is heavy and uniform with a total weight of 6 N. [3]

1(a)(i)	[Force] = MLT ⁻²	B1	or [Energy]= ML^2T^{-2}
	[Power] = [Force] \times [Distance] \div [Time] = [Force] \times LT ⁻¹	M1	or [Energy] ×T ⁻¹
	$= M L^2 T^{-3}$	A1	
		3	
(ii)	[RHS] = $\frac{(L)^3 (LT^{-1})^2 (ML^{-3})}{ML^2 T^{-3}}$	B1B1	For $(LT^{-1})^2$ and (ML^{-3})
	$M L^2 T^{-3}$ $= T$	M1 A1	Simplifying dimensions of RHS
	[LHS] = L so equation is not consistent	E1	With all working correct (cao)
		=====================================	SR ' $L = \frac{28}{9}\pi T$, so inconsistent'
			can earn B1B1M1A1E0
(iii)	[RHS] needs to be multiplied by $\ \mathrm{LT}^{-1}$	M1	
	which are the dimensions of <i>u</i>	A1	
	Correct formula is $x = \frac{28 \pi r^3 u^3 \rho}{9 R}$	A1 cao	RHS must appear correctly
	9 <i>P</i>	3	· · · · · · · · · · · · · · · · · · ·
	OR $x = k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta}$		
	M1		Equating powers of one
	$\beta = 3$ A1		dimension
	$x = \frac{28\pi r^3 u^3 \rho}{9P} $ A1		
(b)(i)	Elastic energy is $\frac{1}{2} \times 150 \times 0.8^2$	M1	
	=48 J	A1	Treat use of modulus
		2	$\lambda = 150 \text{ N}$ as MR
(ii)	In extreme position,		
	length of string is $2\sqrt{1.2^2 + 0.9^2}$ (= 3)	B1	for $\sqrt{1.2^2 + 0.9^2}$ or 1.5 or 3
	elastic energy is $\frac{1}{2} \times 150 \times 1.4^2$ (=147)	M1	allow M1 for $(2 \times) \frac{1}{2} \times 150 \times 0.7^2$
	By conservation of energy,	M1	Equation involving EE and KE
	$147 - 48 = \frac{1}{2} \times m \times 10^2$	A1	
	Mass is 1.98 kg	A1	
		5	

(a)(i) Tension is $10.25 \mathrm{N}$	2	Vortically Taga559 0609		M1		
(ii) Radius of circle is $r = 2.8 \sin 55^\circ$ (= 2.294) B1 Towards centre, $T \sin 55^\circ = 0.6 \times \frac{v^2}{2.8 \sin 55^\circ}$ M2 Give M1 for one error OR $T \sin 55^\circ = 0.6 \times (2.8 \sin 55^\circ) \times \omega^2$ M1 or $T = 0.6 \times 2.8 \times \omega^2$ Dependent on previous M1 Speed is 5.67 ms^{-1} A1 Tangential acceleration is $T = 0.4 \times 1.12$ M1 $F_1 = 0.5 \times 1.4 \times 1.12$ A1 Radial acceleration is $T = 0.4 \times 1.12$ M1 $F_2 = 0.5 \times 1.4 \times 1.12$ A1 $F_2 = 0.5 \times 1.4 \times 1.12$ A1 Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 Normal reaction $F = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ A1 A1 A1 For LHS and RHS Both dependent on M1M1 $\omega = 2.1$ A1 A1 Cao S (iii) $\tan \theta = \frac{F_1}{F_2}$ M1 A1	2 (a)(i)	Vertically, $T\cos 55^\circ = 0.6 \times 9.8$				
$ \begin{array}{ c c c c } \hline \textbf{(iii)} & & & & & & & & & & & & & & & & & & &$	(4)(1)	10.23 N		, ()	2	
$ \begin{array}{ c c c c } \hline \textbf{(iii)} & & & & & & & & & & & & & & & & & & &$		Radius of circle is $r = 2.8 \sin 55^\circ$ (= 2.294)		R1		
Towards centre, $T \sin 55^{\circ} = 0.6 \times \frac{v^2}{2.8 \sin 55^{\circ}}$ M2 Give M1 for one error OR $T \sin 55^{\circ} = 0.6 \times (2.8 \sin 55^{\circ}) \times \omega^2$ M1 $\omega = 2.47$ Dependent on previous M1 Speed is $5.67 \mathrm{ms}^{-1}$ A1 $\omega = (2.8 \sin 55^{\circ}) \times \omega$ M1 $\omega = (2.8 \sin 55^{\circ}) \times \omega$ M1 Speed is $5.67 \mathrm{ms}^{-1}$ A1 $\omega = (2.8 \sin 55^{\circ}) \times \omega$ M1 $\omega = (2.8 \cos 55^{\circ}) \times \omega$ M2 $\omega = (2.8 \cos 55^{\circ}) \times \omega$ M2 $\omega = (2.8 \cos 55^{\circ}) \times $	(ii)					
OR $T \sin 55^{\circ} = 0.6 \times (2.8 \sin 55^{\circ}) \times \omega^{2}$ M1 $\omega = 2.47$ $v = (2.8 \sin 55^{\circ}) \omega$ M1 Dependent on previous M1 Speed is 5.67 ms^{-1} A1 $\omega = (2.8 \sin 55^{\circ}) \omega$ M1 $\omega = (2.8 \cos 55^{\circ}) \omega$ M1 $\omega =$		2				
$\frac{\omega = 2.47}{v = (2.8 \sin 55^\circ) \omega} \qquad \text{M1} \qquad Dependent on previous M1}$ $\text{Speed is } 5.67 \text{ms}^{-1} \qquad \text{A1} \qquad \textbf{4}$ $\text{(b)(i)} \qquad \text{Tangential acceleration is } r \alpha = 1.4 \times 1.12 \qquad \text{M1} \qquad \textbf{A1} \qquad \textbf{A2} \qquad \textbf{A2} \qquad \textbf{A2} \qquad \textbf{A2} \qquad \textbf{A2} \qquad \textbf{A2} \qquad \textbf{A3} \qquad \textbf{A3} \qquad \textbf{A3} \qquad \textbf{A4} \qquad \textbf{A4} \qquad \textbf{A4} \qquad \textbf{A5} \qquad \textbf{A7} \qquad $		Towards centre, $T \sin 55^\circ = 0.6 \times \frac{v^2}{2.8 \sin 55^\circ}$		M2		Give M1 for one error
$\frac{\omega = 2.47}{v = (2.8 \sin 55^\circ) \omega} \qquad \text{M1} \qquad Dependent on previous M1}{\text{Speed is } 5.67 \text{ ms}^{-1}} \qquad \text{A1} \qquad \textbf{4}$ $(b)(i) \qquad Fangential acceleration is r \alpha = 1.4 \times 1.12 $		OR $T \sin 55^{\circ} = 0.6 \times (2.8 \sin 55^{\circ}) \times \omega^2$	M1			or $T = 0.6 \times 2.8 \times \omega^2$
Speed is $5.67 \mathrm{ms^{-1}}$ A1 4 (b)(i) Tangential acceleration is $r \alpha = 1.4 \times 1.12$ $F_1 = 0.5 \times 1.4 \times 1.12$ $= 0.784 \mathrm{N}$ Radial acceleration is $r \omega^2 = 1.4 \omega^2$ $F_2 = 0.5 \times 1.4 \omega^2$ $= 0.7 \omega^2 \mathrm{N}$ A1 Friction $F = \sqrt{F_1^2 + F_2^2}$ Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ A1 A1 $\omega = 2.1$ For LHS and RHS Both dependent on M1M1 A1 cao 5		` ´				
(b)(i) Tangential acceleration is $r\alpha = 1.4 \times 1.12$ M1 $F_1 = 0.5 \times 1.4 \times 1.12 = 0.784 \text{ N}$ Radial acceleration is $r\omega^2 = 1.4\omega^2$ M1 $F_2 = 0.5 \times 1.4\omega^2 = 0.7\omega^2 \text{ N}$ A1 $F_3 = 0.7\omega^2 \text{ N}$ A1 $F_4 = 0.700 \times 1.4\omega^2 = 0.7\omega^2 \text{ N}$ A1 $F_5 = 0.7\omega^2 \text{ N}$ A1 $F_6 = 0.7\omega^2 \text{ N}$ A1 $F_7 = 0.700 \times 1.4\omega^2 = 0.7\omega^2 \text{ penalise once only}$ (ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 $F_7 = 0.700 \times 1.4\omega^2 = 0.700 $		$v = (2.8\sin 55^\circ)\omega$	M1			Dependent on previous M1
(b)(i) Tangential acceleration is $r\alpha = 1.4 \times 1.12$ M1 $F_1 = 0.5 \times 1.4 \times 1.12 = 0.784 \text{ N}$ Radial acceleration is $r\omega^2 = 1.4\omega^2$ M1 $F_2 = 0.5 \times 1.4\omega^2 = 0.7\omega^2 \text{ N}$ A1 $F_3 = 0.7\omega^2 \text{ N}$ A1 $F_4 = 0.700 \times 1.4\omega^2 = 0.7\omega^2 \text{ N}$ A1 $F_5 = 0.7\omega^2 \text{ N}$ A1 $F_6 = 0.7\omega^2 \text{ N}$ A1 $F_7 = 0.700 \times 1.4\omega^2 = 0.7\omega^2 \text{ penalise once only}$ (ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 $F_7 = 0.700 \times 1.4\omega^2 = 0.700 $		Speed is 5.67 m s ⁻¹		Λ1		
(b)(i) $F_1 = 0.5 \times 1.4 \times 1.12$ $= 0.784 \text{ N}$ A1 Radial acceleration is $r \omega^2 = 1.4 \omega^2$ M1 $F_2 = 0.5 \times 1.4 \omega^2$ $= 0.7 \omega^2 \text{ N}$ A1 SR $F_1 = -0.784$, $F_2 = -0.7 \omega^2$ penalise once only (ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ M1 $\sqrt{0.784^2 + 0.49 \omega^4} = 0.65 \times 0.5 \times 9.8$ A1 A1 $\omega = 2.1$ For LHS and RHS Both dependent on M1M1 $\omega = 2.1$ A1 cao 5 (iii) $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc		opeda to stor ms		Λ1	4	
(b)(i) $F_1 = 0.5 \times 1.4 \times 1.12$ $= 0.784 \text{ N}$ A1 Radial acceleration is $r \omega^2 = 1.4 \omega^2$ M1 $F_2 = 0.5 \times 1.4 \omega^2$ $= 0.7 \omega^2 \text{ N}$ A1 SR $F_1 = -0.784$, $F_2 = -0.7 \omega^2$ penalise once only (ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ M1 $\sqrt{0.784^2 + 0.49 \omega^4} = 0.65 \times 0.5 \times 9.8$ A1 A1 $\omega = 2.1$ For LHS and RHS Both dependent on M1M1 $\omega = 2.1$ A1 cao 5 (iii) $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc		Tangential acceleration is $r = 1.4 \times 1.12$		M1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)(i)			1011		
Radial acceleration is $r\omega^2=1.4\omega^2$ M1 $F_2=0.5\times 1.4\omega^2$ $=0.7\omega^2 \text{ N}$ A1 $SR F_1=-0.784, F_2=-0.7\omega^2$ $penalise once only$ (ii) Friction $F=\sqrt{F_1^2+F_2^2}$ Normal reaction $R=0.5\times 9.8$ About to slip when $F=\mu\times 0.5\times 9.8$ About to slip when $F=\mu\times 0.5\times 9.8$ $\sqrt{0.784^2+0.49\omega^4}=0.65\times 0.5\times 9.8$ $\omega=2.1$ A1 A1 $\omega=2.1$ For LHS and RHS $Both \ dependent \ on \ M1M1$ A1 cao 5 (iii) $\tan\theta=\frac{F_1}{F_2}$ M1 Allow M1 for $\tan\theta=\frac{F_2}{F_1}$ etc		<u> </u>		۸1		
$F_2 = 0.5 \times 1.4 \omega^2 \\ = 0.7 \omega^2 \text{N}$ A1 $A1$ $SR F_1 = -0.784, F_2 = -0.7 \omega^2 \\ penalise \ once \ only$ (ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ $\sqrt{0.784^2 + 0.49 \omega^4} = 0.65 \times 0.5 \times 9.8$ A1 A1 $\omega = 2.1$ For LHS and RHS Both dependent on M1M1 $\omega = 2.1$ A1 cao 5 (iii) $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				IVI 1		
(ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ Alout $0.784^2 + 0.49\omega^4 = 0.65 \times 0.5 \times 9.8$ Alout $0.65 \times $		_				
(ii) Friction $F = \sqrt{F_1^2 + F_2^2}$ M1 Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ M1 $\sqrt{0.784^2 + 0.49}\omega^4 = 0.65 \times 0.5 \times 9.8$ A1 A1 For LHS and RHS Both dependent on M1M1 $\omega = 2.1$ M1 Allow M1 for $\tan \theta = \frac{F_1}{F_1}$ etc		$=0.7\omega^2\mathrm{N}$		A1		SR $F_1 = -0.784$, $F_2 = -0.7\omega^2$
Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ $\sqrt{0.784^2 + 0.49\omega^4} = 0.65 \times 0.5 \times 9.8$ $\omega = 2.1$ M1 A1 A1 For LHS and RHS Both dependent on M1M1 A1 cao 5 M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc					4	penalise once only
Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ $\sqrt{0.784^2 + 0.49}\omega^4 = 0.65 \times 0.5 \times 9.8$ M1 A1 A1 $\omega = 2.1$ For LHS and RHS Both dependent on M1M1 A1 cao 5 M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc	(ii)	Friction $E = \sqrt{E^2 + E^2}$		N/1		
About to slip when $F = \mu \times 0.5 \times 9.8$ M1 A1 A1 For LHS and RHS Both dependent on M1M1 $\omega = 2.1$ A1 cao		VII VI		IVI I		
$\sqrt{0.784^2 + 0.49\omega^4} = 0.65 \times 0.5 \times 9.8$ $\omega = 2.1$ A1 A1 $A1 cao$ 5 For LHS and RHS Both dependent on M1M1 $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc				M1		
$\omega = 2.1$ Allow M1 for $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc						
$\omega = 2.1$ A1 cao 5 $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc		$\sqrt{0.784 + 0.49}\omega = 0.63 \times 0.3 \times 9.8$		AT AT		
(iii) $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc		m = 2.1				Both dependent on writin
(iii) $\tan \theta = \frac{F_1}{F_2}$ M1 Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc		w - 2.1		A1 cao	_	
$ \sin \theta = \frac{1}{F_2}$ Allow without an $\theta = \frac{1}{F_1}$ etc.					၁	
	(iii)	$\tan \theta = \frac{F_1}{F_2}$		M1		Allow M1 for $\tan \theta = \frac{F_2}{F_2}$ etc
$=\frac{0.784}{1.00}$						F_1
$-\frac{1}{0.7 \times 2.1^2}$		$=\frac{0.784}{0.7\times2.1^2}$		A1		
U./×2.1		U./×2.1				
Angle is 14.25° Accept 0.249 rad		Angle is 14.25°		A1		Accept 0.249 rad
3					3	

3 (i)	$T_{\rm AP} = \frac{1323}{3} \times 2 (=882)$	B1	
	$T_{\rm BP} = \frac{1323}{4.5} \times 2.5 (=735)$	B1	
	$T_{\rm AP} - mg - T_{\rm BP} = 882 - 15 \times 9.8 - 735 = 0$		
	so P is in equilibrium	E1	
		3	
	OR $\frac{1323}{3}$ (AP - 3) = $\frac{1323}{4.5}$ (BP - 4.5) + 15 × 9.8 B2		Give B1 for one tension correct
	AP + BP = 12 and solving, $AP = 5$		
(ii)	Extension of AP is $5-x-3=2-x$		
	$T_{\rm AP} = \frac{1323}{3}(2-x) = 441(2-x)$	E1	
	Extension of BP is $7 + x - 4.5 = 2.5 + x$	B1	
	$T_{\rm BP} = \frac{1323}{4.5}(2.5+x) = 294(2.5+x)$	B1	
	4.3	3	
(iii)	$441(2-x) - 15 \times 9.8 - 294(2.5+x) = 15 \frac{d^2x}{dt^2}$	M1 A1	Equation of motion involving 3 forces
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -49x$	M1	Obtaining $\frac{d^2x}{dt^2} = -\omega^2x$ (+c)
	Motion is SHM with period $\frac{2\pi}{\omega} = \frac{2\pi}{7} = 0.898 \mathrm{s}$	A1 4	Accept $\frac{2}{7}\pi$
(iv)	Centre of motion is AP = 5 If minimum value of AP is 3.5, amplitude is 1.5	B1	
	Maximum value of AP is 6.5 m	1	
(v)	When $AP = 4.1$, $x = 0.9$		
	Using $v^2 = \omega^2 (A^2 - x^2)$	M1	
	$v^2 = 49(1.5^2 - 0.9^2)$	A1	
	Speed is $8.4 \mathrm{ms}^{-1}$	A1 3	Accept ±8.4 or -8.4
	$OR x = 1.5 \sin 7t$	 	$ \begin{array}{ll} \text{Or} & x = 1.5 \cos 7t \end{array} $
	When $x = 0.9$, $7t = 0.6435$ $(t = 0.0919)$		or $7t = 0.9273$ $(t = 0.1325)$
	$v = 7 \times 1.5 \cos 7t $ M1		or $v = -7 \times 1.5 \sin 7t$
	$=10.5\cos(0.6435)$ A1		$= (-) 10.5 \sin(0.9273)$
	= 8.4 A1		

(vi)		M1	For $\cos(\sqrt{49} t)$ or $\sin(\sqrt{49} t)$
	$x = 1.5\cos 7t$	A1	or $x = 1.5 \sin 7t$ M1A1 above can be awarded in (v) if not earned in (vi)
	When $1.5\cos 7t = 0.5$	M1	or other fully correct method to find the required time e.g. $0.400 - 0.224$ or
	Time taken is 0.176 s	A1 4	0.224 – 0.049 Accept 0.17 or 0.18

	T			1
4 (i)	$\int \pi y^2 dx = \int_1^4 \pi x dx$		M1	π may be omitted throughout
	$= \left[\frac{1}{2}\pi x^2\right]_1^4 = 7.5\pi$		A1	
	$\int \pi x y^2 dx$		M1	
	$= \int_{1}^{4} \pi x^{2} dx = \left[\frac{1}{3}\pi x^{3}\right]_{1}^{4} (=21\pi)$)	A1	
	$\bar{x} = \frac{21\pi}{7.5\pi}$		M1	
	= 2.8			
			A1 6	
(ii)	Cylinder has mass $3\pi \rho$		B1	Or volume 3π
(,	Cylinder has CM at $x = 2.5$		B1	or voiding 3n
			M1	Relating three CMs
	$(4.5\pi \ \rho) \ \overline{x} + (3\pi \ \rho)(2.5) = (7.5\pi \ \rho)(2.8)$		A1	(ρ and l or π may be omitted)
				or equivalent, e.g.
				$\bar{x} = \frac{(7.5\pi \rho)(2.8) - (3\pi \rho)(2.5)}{7.5\pi \rho - 3\pi \rho}$
	- 2			Correctly obtained
	$\overline{x} = 3$		E1 5	Solved Stanley
(iii)(<i>A</i>)	Moments about A, $S \times 3 - 96 \times 2 = 0$		M1	Moments equation
()(2.1)	S = 64 N		A1	
	Vertically, $R + S = 96$		M1	or another moments equation
	R = 32 N		A 4	Dependent on previous M1
	R = 32 IV		A1 4	
(<i>B</i>)	Moments about A,		M1	Moments equation
	$S \times 3 - 96 \times 2 - 6 \times 1.5 =$	0	A1	·
	Vertically, $R + S = 96 + 6$			
	R = 35 N, S = 67 N		A1	Both correct
			3	
	OR Add 3 N to each of R and S	M1		Provided $R \neq S$
	R = 35 N, S = 67 N	A2		Both correct