## OXFORD CAMBRIDGE AND RSA EXAMINATIONS

## Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

## 4763

Mechanics 3
Monday 22 MAY $2006 \quad$ Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

## TIME 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{ms}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $\mathrm{g}=9.8$.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

1 (a) (i) Find the dimensions of power.
In a particle accelerator operating at power $P$, a charged sphere of radius $r$ and density $\rho$ has its speed increased from $u$ to $2 u$ over a distance $x$. A student derives the formula

$$
x=\frac{28 \pi r^{3} u^{2} \rho}{9 P}
$$

(ii) Show that this formula is not dimensionally consistent.
(iii) Given that there is only one error in this formula for $x$, obtain the correct formula.
(b) A light elastic string, with natural length 1.6 m and stiffness $150 \mathrm{Nm}^{-1}$, is stretched between fixed points A and B which are 2.4 m apart on a smooth horizontal surface.
(i) Find the energy stored in the string.

A particle is attached to the mid-point of the string. The particle is given a horizontal velocity of $10 \mathrm{~m} \mathrm{~s}^{-1}$ perpendicular to AB (see Fig. 1.1), and it comes instantaneously to rest after travelling a distance of 0.9 m (see Fig. 1.2).


Fig. 1.1


Fig. 1.2
(ii) Find the mass of the particle.
(a) A particle P of mass 0.6 kg is connected to a fixed point by a light inextensible string of length 2.8 m . The particle P moves in a horizontal circle as a conical pendulum, with the string making a constant angle of $55^{\circ}$ with the vertical.
(i) Find the tension in the string.
(ii) Find the speed of P .
(b) A turntable has a rough horizontal surface, and it can rotate about a vertical axis through its centre O . While the turntable is stationary, a small object Q of mass 0.5 kg is placed on the turntable at a distance of 1.4 m from O . The turntable then begins to rotate, with a constant angular acceleration of $1.12 \mathrm{rads}^{-2}$. Let $\omega \mathrm{rad} \mathrm{s}^{-1}$ be the angular speed of the turntable.


Fig. 2
(i) Given that Q does not slip, find the components $F_{1}$ and $F_{2}$ of the frictional force acting on Q perpendicular and parallel to QO (see Fig. 2). Give your answers in terms of $\omega$ where appropriate.

The coefficient of friction between Q and the turntable is 0.65 .
(ii) Find the value of $\omega$ when Q is about to slip.
(iii) Find the angle which the frictional force makes with QO when Q is about to slip.

3 A fixed point A is 12 m vertically above a fixed point B. A light elastic string, with natural length 3 m and modulus of elasticity 1323 N , has one end attached to A and the other end attached to a particle P of mass 15 kg . Another light elastic string, with natural length 4.5 m and modulus of elasticity 1323 N , has one end attached to B and the other end attached to P .
(i) Verify that, in the equilibrium position, $\mathrm{AP}=5 \mathrm{~m}$.

The particle P now moves vertically, with both strings AP and BP remaining taut throughout the motion. The displacement of P above the equilibrium position is denoted by $x \mathrm{~m}$ (see Fig. 3).


Fig. 3
(ii) Show that the tension in the string AP is $441(2-x) \mathrm{N}$ and find the tension in the string BP.
(iii) Show that the motion of P is simple harmonic, and state the period.

The minimum length of AP during the motion is 3.5 m .
(iv) Find the maximum length of AP.
(v) Find the speed of P when $\mathrm{AP}=4.1 \mathrm{~m}$.
(vi) Find the time taken for AP to increase from 3.5 m to 4.5 m .

4 The region bounded by the curve $y=\sqrt{x}$, the $x$-axis and the lines $x=1$ and $x=4$ is rotated through $2 \pi$ radians about the $x$-axis to form a uniform solid of revolution.
(i) Find the $x$-coordinate of the centre of mass of this solid.

From this solid, the cylinder with radius 1 and length 3 with its axis along the $x$-axis (from $x=1$ to $x=4$ ) is removed.
(ii) Show that the centre of mass of the remaining object, Q , has $x$-coordinate 3 .

This object Q has weight 96 N and it is supported, with its axis of symmetry horizontal, by a string passing through the cylindrical hole and attached to fixed points A and B (see Fig. 4). AB is horizontal and the sections of the string attached to $A$ and $B$ are vertical. There is sufficient friction to prevent slipping.


Fig. 4
(iii) Find the support forces, $R$ and $S$, acting on the string at A and B
(A) when the string is light,
(B) when the string is heavy and uniform with a total weight of 6 N .

| 1(a)(i) | $\begin{aligned} & {[\text { [ Force }]=\mathrm{ML} \mathrm{~T}^{-2}} \\ & {\left[\begin{array}{rl} {[\text { Power }]} & =[\text { Force }] \times[\text { Distance }] \div[\text { Time }] \\ & =[\text { Force }] \times \mathrm{LT}^{-1} \\ & =\mathrm{ML}^{2} \mathrm{~T}^{-3} \end{array}\right.} \end{aligned}$ | B1 <br> M1 <br> A1 <br> 3 | or [ Energy ] $=\mathrm{ML}^{2} \mathrm{~T}^{-2}$ <br> or [ Energy ] $\times \mathrm{T}^{-1}$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\left.\begin{array}{rl} {[\text { RHS }]} & =\frac{(\mathrm{L})^{3}\left(\mathrm{LT}^{-1}\right)^{2}\left(\mathrm{ML}^{-3}\right)}{\mathrm{ML}^{2} \mathrm{~T}^{-3}} \\ & =\mathrm{T} \end{array}\right]$ | B1B1 <br> M1 <br> A1 <br> E1 | For $\left(\mathrm{LT}^{-1}\right)^{2}$ and $\left(\mathrm{ML}^{-3}\right)$ <br> Simplifying dimensions of RHS <br> With all working correct (cao) SR '... $\mathrm{L}=\frac{28}{9} \pi \mathrm{~T}$, so inconsistent ' can earn B1B1M1A1E0 |
| (iii) | [ RHS ] needs to be multiplied by $\mathrm{LT}^{-1}$ which are the dimensions of $u$ Correct formula is $x=\frac{28 \pi r^{3} u^{3} \rho}{9 P}$ | M1 <br> A1 <br> A1 cao <br> 3 | RHS must appear correctly |
|  | $\begin{aligned} \text { OR } & x=k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta} \\ & \beta=3 \\ x & =\frac{28 \pi r^{3} u^{3} \rho}{9 P} \end{aligned}$ |  | Equating powers of one dimension |
| (b)(i) | $\begin{aligned} & \text { Elastic energy is } \frac{1}{2} \times 150 \times 0.8^{2} \\ &=48 \mathrm{~J} \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ $2$ | Treat use of modulus $\lambda=150 \mathrm{~N}$ as MR |
| (ii) | In extreme position, <br> length of string is $2 \sqrt{1.2^{2}+0.9^{2}} \quad(=3)$ <br> elastic energy is $\frac{1}{2} \times 150 \times 1.4^{2} \quad(=147)$ <br> By conservation of energy, $147-48=\frac{1}{2} \times m \times 10^{2}$ <br> Mass is 1.98 kg | B1 <br> M1 <br> M1 <br> A1 <br> A1 <br> 5 | for $\sqrt{1.2^{2}+0.9^{2}}$ or 1.5 or 3 allow M1 for $(2 \times) \frac{1}{2} \times 150 \times 0.7^{2}$ <br> Equation involving EE and KE |


| $\begin{aligned} & 2 \\ & \text { (a)(i) } \end{aligned}$ | Vertically, $\quad T \cos 55^{\circ}=0.6 \times 9.8$ Tension is 10.25 N | M1 $2$ |  |
| :---: | :---: | :---: | :---: |
| (ii) | Radius of circle is $r=2.8 \sin 55^{\circ} \quad(=2.294)$ | B1 |  |
|  | Towards centre, $T \sin 55^{\circ}=0.6 \times \frac{v^{2}}{2.8 \sin 55^{\circ}}$ | M2 | Give M1 for one error |
|  | $\begin{aligned} \text { OR } T \sin 55^{\circ} & =0.6 \times\left(2.8 \sin 55^{\circ}\right) \times \omega^{2} \\ \omega & =2.47 \\ v & =\left(2.8 \sin 55^{\circ}\right) \omega \end{aligned}$ |  | or $T=0.6 \times 2.8 \times \omega^{2}$ <br> Dependent on previous M1 |
|  | Speed is $5.67 \mathrm{~m} \mathrm{~s}^{-1}$ | $\mathrm{A} 1$ $4$ |  |
| (b)(i) | Tangential acceleration is $r \alpha=1.4 \times 1.12$ $\begin{aligned} F_{1} & =0.5 \times 1.4 \times 1.12 \\ & =0.784 \mathrm{~N} \end{aligned}$ <br> Radial acceleration is $r \omega^{2}=1.4 \omega^{2}$ $\begin{aligned} F_{2} & =0.5 \times 1.4 \omega^{2} \\ & =0.7 \omega^{2} \mathrm{~N} \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 | SR $\quad F_{1}=-0.784, F_{2}=-0.7 \omega^{2}$ penalise once only |
| (ii) | Friction $F=\sqrt{F_{1}^{2}+F_{2}{ }^{2}}$ <br> Normal reaction $R=0.5 \times 9.8$ <br> About to slip when $F=\mu \times 0.5 \times 9.8$ $\sqrt{0.784^{2}+0.49 \omega^{4}}=0.65 \times 0.5 \times 9.8$ $\omega=2.1$ | M1 <br> M1 <br> A1 A1 <br> A1 cao <br> 5 | For LHS and RHS <br> Both dependent on M1M1 |
| (iii) | $\begin{aligned} \tan \theta & =\frac{F_{1}}{F_{2}} \\ & =\frac{0.784}{0.7 \times 2.1^{2}} \end{aligned}$ <br> Angle is $14.25^{\circ}$ | M1 <br> A1 <br> A1 <br> 3 | Allow M 1 for $\tan \theta=\frac{F_{2}}{F_{1}}$ etc <br> Accept 0.249 rad |


| 3 (i) | $\begin{aligned} & T_{\mathrm{AP}}=\frac{1323}{3} \times 2 \quad(=882) \\ & T_{\mathrm{BP}}=\frac{1323}{4.5} \times 2.5 \quad(=735) \\ & T_{\mathrm{AP}}-m g-T_{\mathrm{BP}}=882-15 \times 9.8-735=0 \end{aligned}$ <br> so P is in equilibrium | B1 <br> B1 <br> E1 <br> 3 |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{array}{ccc} \text { OR } \quad \frac{1323}{3}(\mathrm{AP}-3)=\frac{1323}{4.5}(\mathrm{BP}-4.5)+15 \times 9.8 & \mathrm{~B} 2 \\ \mathrm{AP}+\mathrm{BP}=12 \text { and solving, } \quad \mathrm{AP}=5 & \mathrm{E} 1 \end{array}$ |  | Give B1 for one tension correct |
| (ii) | Extension of AP is $5-x-3=2-x$ $T_{\mathrm{AP}}=\frac{1323}{3}(2-x)=441(2-x)$ <br> Extension of BP is $7+x-4.5=2.5+x$ $T_{\mathrm{BP}}=\frac{1323}{4.5}(2.5+x)=294(2.5+x)$ | $\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ $3$ |  |
| (iii) | $\begin{aligned} 441(2-x)-15 \times 9.8-294(2.5+x) & =15 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =-49 x \end{aligned}$ <br> Motion is SHM with period $\frac{2 \pi}{\omega}=\frac{2 \pi}{7}=0.898 \mathrm{~s}$ | M1 <br> A1 <br> M1 <br> A1 <br> 4 | Equation of motion involving 3 forces <br> Obtaining $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x(+c)$ <br> Accept $\frac{2}{7} \pi$ |
| (iv) | Centre of motion is $\mathrm{AP}=5$ <br> If minimum value of $A P$ is 3.5 , amplitude is 1.5 <br> Maximum value of AP is 6.5 m | B1 |  |
| (v) | When $\mathrm{AP}=4.1, \quad x=0.9$ <br> Using $v^{2}=\omega^{2}\left(A^{2}-x^{2}\right)$ $v^{2}=49\left(1.5^{2}-0.9^{2}\right)$ <br> Speed is $8.4 \mathrm{~m} \mathrm{~s}^{-1}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ $3$ | Accept $\pm 8.4$ or -8.4 |
|  |  |  | $\begin{aligned} \text { or } & x=1.5 \cos 7 t \\ \text { or } & 7 t \end{aligned}=0.9273 \quad(t=0.1325)$ |


| (vi) | $x=1.5 \cos 7 t$ <br> When $1.5 \cos 7 t=0.5$ <br> Time taken is 0.176 s | M1 <br> A1 <br> M1 <br> A1 |  | For $\cos (\sqrt{49} t)$ or $\sin (\sqrt{49} t)$ or $x=1.5 \sin 7 t$ <br> M1A1 above can be awarded in <br> (v) if not earned in (vi) <br> or other fully correct method to find the required time <br> e.g. $0.400-0.224$ or 0.224-0.049 <br> Accept 0.17 or 0.18 |
| :---: | :---: | :---: | :---: | :---: |


| 4 (i) |  | M1  <br> A1  <br> M1  <br> A1  <br> M1  <br> A1 6 | $\pi$ may be omitted throughout |
| :---: | :---: | :---: | :---: |
| (ii) | Cylinder has mass $3 \pi \rho$ Cylinder has CM at $x=2.5$ $(4.5 \pi \rho) \bar{x}+(3 \pi \rho)(2.5)=(7.5 \pi \rho)(2.8)$ $\bar{x}=3$ | B1 <br> B1 <br> M1 <br> A1 <br> E1 <br> 5 | Or volume $3 \pi$ <br> Relating three CMs <br> ( $\rho$ and / or $\pi$ may be omitted) <br> or equivalent, e.g. $\bar{x}=\frac{(7.5 \pi \rho)(2.8)-(3 \pi \rho)(2.5)}{7.5 \pi \rho-3 \pi \rho}$ <br> Correctly obtained |
| (iii)(A) | Moments about A $\begin{aligned} S \times 3-96 \times 2 & =0 \\ S & =64 \mathrm{~N} \end{aligned}$ <br> Vertically, $R+S=96$ $R=32 \mathrm{~N}$ | M1 <br> A1 <br> M1 <br> A1 <br> 4 | Moments equation <br> or another moments equation Dependent on previous M1 |
| (B) | Moments about $A$ $S \times 3-96 \times 2-6 \times 1.5=0$ <br> Vertically, $\begin{aligned} & R+S=96+6 \\ & R=35 \mathrm{~N}, \quad S=67 \mathrm{~N} \end{aligned}$ | M1 <br> A1 <br> A1 | Moments equation <br> Both correct |
|  | $\begin{aligned} & \text { OR Add } 3 \mathrm{~N} \text { to each of } R \text { and } S \\ & R=35 \mathrm{~N}, \quad S=67 \mathrm{~N} \end{aligned}$ |  | Provided $R \neq S$ <br> Both correct |

