

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4762

Mechanics 2

Friday 27 JANUARY 2006

Afternoon

1 hour 30 minutes

Additional materials:

8 page answer booklet Graph paper

MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g m s^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

- 1 When a stationary firework P of mass 0.4 kg is set off, the explosion gives it an instantaneous impulse of 16 Ns vertically upwards.
 - (i) Calculate the speed of projection of P.

[2]

While travelling vertically upwards at $32 \,\mathrm{m\,s^{-1}}$, P collides directly with another firework Q, of mass 0.6 kg, that is moving directly downwards with speed $u \,\mathrm{m\,s^{-1}}$, as shown in Fig. 1. The coefficient of restitution in the collision is 0.1 and Q has a speed of $4 \,\mathrm{m\,s^{-1}}$ vertically *upwards* immediately after the collision.

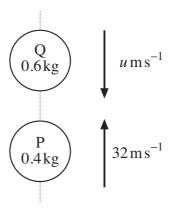


Fig. 1

(ii) Show that u = 18 and calculate the speed and direction of motion of P immediately after the collision. [7]

Another firework of mass 0.5 kg has a velocity of $(-3.6\mathbf{i} + 5.2\mathbf{j})$ m s⁻¹, where \mathbf{i} and \mathbf{j} are horizontal and vertical unit vectors, respectively. This firework explodes into two parts, C and D. Part C has mass 0.2 kg and velocity $(3\mathbf{i} + 4\mathbf{j})$ m s⁻¹ immediately after the explosion.

(iii) Calculate the velocity of D immediately after the explosion in the form $a\mathbf{i} + b\mathbf{j}$. Show that C and D move off at 90° to one another. [8]

2 A uniform beam, AB, is 6 m long and has a weight of 240 N.

Initially, the beam is in equilibrium on two supports at C and D, as shown in Fig. 2.1. The beam is horizontal.

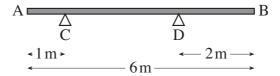


Fig. 2.1

(i) Calculate the forces acting on the beam from the supports at C and D.

A workman tries to move the beam by applying a force TN at A at 40° to the beam, as shown in Fig. 2.2. The beam remains in horizontal equilibrium but the reaction of support C on the beam is zero.

[4]

[4]

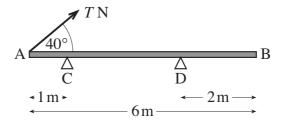


Fig. 2.2

- (ii) (A) Calculate the value of T.
 - (B) Explain why the support at D cannot be smooth. [1]

The beam is now supported by a light rope attached to the beam at A, with B on rough, horizontal ground. The rope is at 90° to the beam and the beam is at 30° to the horizontal, as shown in Fig. 2.3. The tension in the rope is P N. The beam is in equilibrium on the point of sliding.

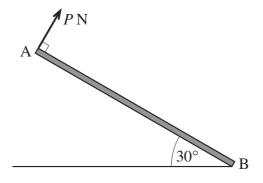


Fig. 2.3

- (iii) (A) Show that $P = 60\sqrt{3}$ and hence, or otherwise, find the frictional force between the beam and the ground. [5]
 - (B) Calculate the coefficient of friction between the beam and the ground. [5]

4762 January 2006 [Turn over

3 (a) A uniform lamina made from rectangular parts is shown in Fig. 3.1. All the dimensions are centimetres. All coordinates are referred to the axes shown in Fig. 3.1.

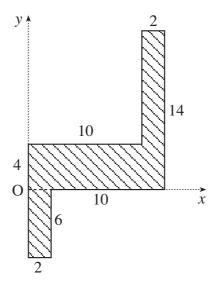


Fig. 3.1

(i) Show that the x-coordinate of the centre of mass of the lamina is 6.5 and find the y-coordinate. [5]

A square of side 2 cm is to be cut from the lamina. The sides of the square are to be parallel to the coordinate axes and the centre of the square is to be chosen so that the *x*-coordinate of the centre of mass of the new shape is 6.4.

(ii) Calculate the x-coordinate of the centre of the square to be removed. [3]

The y-coordinate of the centre of the square to be removed is now chosen so that the y-coordinate of the centre of mass of the final shape is as large as possible.

(iii) Calculate the y-coordinate of the centre of mass of the lamina with the square removed, giving your answer correct to three significant figures. [3]

(b) Fig. 3.2 shows a framework made from light rods of length 2m freely pin-jointed at A, B, C, D and E. The framework is in a vertical plane and is supported at A and C. There are loads of 120 N at B and at E. The force on the framework due to the support at A is R N.

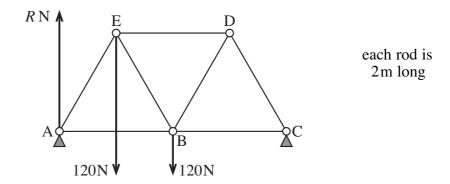


Fig. 3.2

- (i) Show that R = 150. [2]
- (ii) Draw a diagram showing all the forces acting at the points A, B, D and E, including the forces internal to the rods.
 - Calculate the internal forces in rods AE and EB, and determine whether each is a tension or a thrust. [You may leave your answers in surd form.]
- (iii) Without any further calculation of the forces in the rods, explain briefly how you can tell that rod ED is in thrust. [1]

[Question 4 is printed overleaf.]

- A block of mass 20 kg is pulled by a light, horizontal string over a rough, horizontal plane. During 6 seconds, the work done against resistances is 510 J and the speed of the block increases from 5 m s⁻¹ to 8 m s⁻¹.
 - (i) Calculate the power of the pulling force. [4]

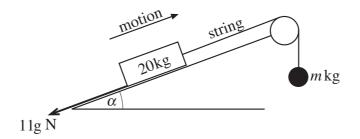


Fig. 4

In parts (ii) and (iii), the sphere is pulled downwards and then released when travelling at a speed of $4 \,\mathrm{m\,s^{-1}}$ vertically downwards. The block never reaches the pulley.

- (ii) Suppose that m = 5 and that after the sphere is released the block moves x m up the plane before coming to rest.
 - (A) Find an expression in terms of x for the change in gravitational potential energy of the system, stating whether this is a gain or a loss. [4]
 - (B) Find an expression in terms of x for the work done against friction. [1]
 - (C) Making use of your answers to parts (A) and (B), find the value of x. [3]
- (iii) Suppose instead that m = 15. Calculate the speed of the sphere when it has fallen a distance 0.5 m from its point of release. [4]

Q 1		mark		Sub
(i)	16 = 0.4v so 40 m s ⁻¹	M1 A1	Use of $I = \Delta mv$	2
(ii)	PCLM \uparrow + ve $0.4 \times 32 - 0.6u = 0.4v_p + 0.6 \times 4$ NEL \uparrow +ve $\frac{4 - v_p}{-u - 32} = -0.1$ Solving u = 18	M1 A1 M1 A1 E1	Use of PCLM Any form Use of NEL. Allow sign errors. Any form Must be obtained from a pair of correct equations. If given $u = 18$ used then $v_P = -1$ must be obtained from 1 equation and both values tested in the second equation	
	$v_{\rm p} = -1$ so 1 m s ⁻¹ downwards	A1 A1	cao. Accept use of given $u = 18$ cao	7
(iii)	Considering the momenta involved $0.5 \binom{-3.6}{5.2} = 0.2 \binom{3}{4} + 0.3 \mathbf{v}_{\mathrm{D}}$ $\mathbf{v}_{\mathrm{D}} = \binom{-8}{6} \text{ so } a = -8 \text{ and } b = 6$ Gradients of the lines are $\frac{4}{3}$ and $\frac{6}{-8}$ Since $\frac{4}{3} \times \frac{6}{-8} = -1$, they are at 90°	M1 B1 B1 A1 A1 A1 E1	PCLM applied. May be implied. LHS momentum of C correct Complete equation. Accept sign error. cao cao Any method for the angle Clearly shown	8
		1		17

(i) Moments about C $240 \times 2 = 3R_{\rm b}$ M1 $R_{\rm b} = 160 \text{ so } 160 \text{ N}$ Resolve vertically $R_{\rm c} + R_{\rm b} = 240$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M2 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M1 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M2 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M2 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M2 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M2 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M2 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ M3 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text{ N}$ N6 $R_{\rm c} = 80 \text{ so } 80 \text$	О				a .
	Q 2		mark		Sub
Resolve vertically R _c + R _D = 240 M1 Resolve vertically R _c + R _D = 240 M1 Resolve vertically R _c = 80 so 80 N F1 F1 FT from their R_D only (ii) (A) Moments about D 240×1 = 4T sin 40 M1 A1 A1 A1 T = 93.343 so 93.3 N (3 s. f.) M1 A1 A1 A1 A1 A1 A1 A1	(i)	Moments about C			
Resolve vertically $R_c + R_b = 240$		$240 \times 2 = 3R_{\rm D}$	M1		
Resolve vertically or moments about D or equivalent. All forces present. FT from their $R_{\rm D}$ only Resolve vertically or moments about D or equivalent. All forces present. FT from their $R_{\rm D}$ only		$R_{\rm D} = 160 \text{ so } 160 \text{ N}$	A1		
MI equivalent. All forces present. FT from their $R_{\rm p}$ only		Resolve vertically			
R _c = 80 so 80 N		$R_{\rm C} + R_{\rm D} = 240$	M1	equivalent.	
(A) Moments about D $240 \times 1 = 4T \sin 40$ MI $1 \text{ Min Moments about D or equivalent}$ Attempt at resolution for RHS RHS correct RHS RHS correct (ii) (B) In equilibrium so horizontal force needed to balance cpt of T . This must be friction and cannot be at C . (iii) (A) Moments about B $3 \times 240 \times \cos 30 = 6P$ MI $1 \times 240 \times \cos 30 = 6P$ MI $1 \times 240 \times \cos 30 = 6P$ MI $1 \times 240 \times \cos 30 = 6P$ MI $1 \times 240 \times \cos 30 = 6P$ MI Resolve horizontally. Friction force $1 \times 240 \times \cos 30 = 6P$ Resolve horizontally. Friction force $1 \times 240 \times \cos 30 = 6P$ Resolve horizontally. Friction force $1 \times 240 \times \cos 30 = 6P$ MI Resolve horizontally. Any resolution required attempted attempted $1 \times 240 \times \cos 30 = 6P$ Resolve horizontally. Any resolution required attempted		$R_{\rm C} = 80 \text{ so } 80 \text{ N}$	F1		4
240×1=4 $T \sin 40$ M1 Attempt at resolution for RHS RHS correct					
M1 A1 RHS correct	(A)		M1	Moments about D or equivalent	
(ii) (B)In equilibrium so horizontal force needed to balance cpt of T . This must be 		240/1 – 47 311 40		•	
(ii) (B)In equilibrium so horizontal force needed to balance cpt of T . This must be friction and cannot be at C .Need reference to horizontal force that must come from friction at D .(iii) (A)Moments about B $3 \times 240 \times \cos 30 = 6P$ M1All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3} \ (103.92)$ E1Accept decimal equivalent P inclined at 30° to verticalB1Seen or equivalent or implied in (iii) (A) or (B).Resolve horizontally. Friction force F $F = P \sin 30$ M1Resolve horizontally. Any resolution required attempted					
(B)In equilibrium so horizontal force needed to balance cpt of T . This must be friction and cannot be at C .Need reference to horizontal force that must come from friction at D .(iii) (A)Moments about B $3 \times 240 \times \cos 30 = 6P$ M1All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3}$ (103.92)E1Accept decimal equivalent P inclined at 30° to verticalB1Seen or equivalent or implied in (iii) (A) or (B).Resolve horizontally. Friction force F $F = P \sin 30$ M1Resolve horizontally. Any resolution required attempted		T = 93.343 so 93.3 N (3 s. f.)	Al		4
needed to balance cpt of T . This must be friction and cannot be at C . Need reference to horizontal force that must come from friction at D . Need reference to horizontal force that must come from friction at D . Moments about B $3 \times 240 \times \cos 30 = 6P$ $P = 60\sqrt{3} \ (103.92)$ M1 All terms present, no extras. Any resolution required attempted. P inclined at 30° to vertical P inclined at 30° to vertical Resolve horizontally. Friction force F $F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted					-
to balance cpt of T . This must be friction and cannot be at C . Need reference to horizontal force that must come from friction at D . Need reference to horizontal force that must come from friction at D . Need reference to horizontal force that must come from friction at D . All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3} \ (103.92)$ E1 Accept decimal equivalent P inclined at 30° to vertical Resolve horizontally. Friction force F $F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted	(B)	_			
friction and cannot be at C. must come from friction at D. (iii) (A) Moments about B $3 \times 240 \times \cos 30 = 6P$ M1 All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3}$ (103.92) E1 Accept decimal equivalent P inclined at 30° to vertical Resolve horizontally. Friction force F $F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted				Need reference to horizontal force that	
(iii) (A) Moments about B $3 \times 240 \times \cos 30 = 6P$ M1 All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3} \ (103.92)$ E1 Accept decimal equivalent P inclined at 30° to vertical B1 Seen or equivalent or implied in (iii) (A) or (B). Resolve horizontally. Friction force F $F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted		friction			
Moments about B $3 \times 240 \times \cos 30 = 6P$ M1 All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3} \ (103.92)$ E1 Accept decimal equivalent P inclined at 30° to vertical Resolve horizontally. Friction force F $F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted		and cannot be at C.		come from friction at D.	1
$3 \times 240 \times \cos 30 = 6P$ M1 All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3} \ (103.92)$ E1 Accept decimal equivalent $P = \sin 30$ Seen or equivalent or implied in (iii) (A) or (B). Resolve horizontally. Friction force $P = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted	(iii				
$3 \times 240 \times \cos 30 = 6P$ M1 All terms present, no extras. Any resolution required attempted. $P = 60\sqrt{3} \ (103.92)$ E1 Accept decimal equivalent $P = \sin 30$ Seen or equivalent or implied in (iii) (A) or (B). Resolve horizontally. Friction force $P = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted)	Moments about D			
$P = 60\sqrt{3}$ (103.92) $P = 6$	(A)		3.41	All terms present, no extras. Any	
P inclined at 30° to vertical B1 Seen or equivalent or implied in (iii) (A) or (B). Resolve horizontally. Friction force F $F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted		$3 \times 240 \times \cos 30 = 6P$	MI		
Resolve horizontally. Friction force F $F = P \sin 30$ Resolve horizontally. Friction force F $Any resolution required attempted$		$P = 60\sqrt{3} \ (103.92)$	E1	Accept decimal equivalent	
$F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted		P inclined at 30° to vertical	B1		
$F = P \sin 30$ M1 Resolve horizontally. Any resolution required attempted		Resolve horizontally. Friction force <i>F</i>			
		·	M1	required	
E 00 /0 /51 () C1 \ A 1 A F		7 00 5 (51.061)	A 1	1	
so $F = 30\sqrt{3}$ (51.961) A1 Any form		So $F = 30\sqrt{3}$ (51.961)	Al	Any form	5

(iii) (B)	Resolve vertically. Normal reaction R $P\cos 30 + R = 240$ Using $E = uR$	M1	Resolve vertically. All terms present and resolution attempted	
	Using $F = \mu R$ $\mu = \frac{30\sqrt{3}}{240 - 60\sqrt{3} \times \frac{\sqrt{3}}{2}}$ $= \frac{30\sqrt{3}}{240 - 90} = \frac{\sqrt{3}}{5} = 0.34641 \text{ so } 0.346 \text{ (3 s. f.)}$	M1 A1	Substitute their expressions for F and R cao. Any form. Accept 2 s. f. or better	5
				19

Q 3		mark		Sub
(a) (i)	$80\left(\frac{\overline{x}}{\overline{y}}\right) = 48\binom{6}{2} + 12\binom{1}{-3} + 20\binom{11}{9}$	M1	Correct method for c.m.	
	$80\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 520\\240 \end{pmatrix}$	B1	Total mass correct	
	(3) (210)	B1	One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$\overline{x} = 6.5$ $\overline{y} = 3$	E1 A1	cao	5
(ii)	Consider x coordinate $520 = 76 \times 6.4 + 4x$	M1 B1	Using additive principle o. e. on <i>x</i> cpts Areas correct. Allow FT from masses from (i)	2
(iii	SO $x = 8.4$	A1	cao	3
)	y coordinate is 1 so we need $240 = 76\overline{y} + 4 \times 1$ and $\overline{y} = 3.10526$ so 3.11 (3 s. f.)	B1 M1 A1	Position of centre of square cao	3
(b) (i)	Moments about C $4R = 120 \times 3 + 120 \times 2$ so $4R = 600$ and $R = 150$	M1 E1	Moments equation. All terms present	2
(ii)	A T_{AB} T_{EB} T_{DB} T_{DC} T_{BC} T_{DC}	B1		
	A↑ $150 + T_{AE} \cos 30 = 0$ $T_{AE} = -100\sqrt{3} \text{ so } 100\sqrt{3} \text{ N (C)}$ E↓ $120 + T_{AE} \cos 30 + T_{EB} \cos 30 = 0$ $T_{EB} = 20\sqrt{3} \text{ so } 20\sqrt{3} \text{ N (T)}$	M1 A1 M1 F1	Equilibrium at a pin-joint Any form. Sign correct. Neglect (C) Equilibrium at E, all terms present Any form. Sign follows working. Neglect (T). T/C consistent with answers	

				6
(iii)	Consider → at E, using (ii) gives ED as thrust	E1	Clearly explained. Accept 'thrust' correctly deduced from wrong answers to (ii).	1
				20

Q 4		mark		Sub
(i)	$\frac{0.5 \times 20 \times 8^2 - 0.5 \times 20 \times 5^2 + 510}{6}$ = 150 W	M1 B1 A1 A1	Use of $P = WD/t$ \triangle KE. Accept ±390 soi All correct including signs	4
(ii) (A)	$20g \times \frac{3}{5}x - 5gx$ $7gx (68.6x) gain$	M1 B1 A1 A1	Use of mgh on both terms Either term (neglecting signs) $\pm 7gx$ in any form.	4
(B)	11gx	B1		1
(C)	$0.5 \times 25 \times 4^2 = 7gx + 11gx = 18gx$ x = 1.13378 so 1.13 m (3 s. f.)	M1 B1 A1	Use of work-energy equation. Allow 1 RHS term omitted. KE term correct cao. Except follow wrong sign for 7 <i>gx</i> only.	
(iii)	either $0.5 \times 35 \times v^2 - 0.5 \times 35 \times 16$ $= 15g \times 0.5 - 11g \times 0.5 - 12g \times 0.5$ $v^2 = 13.76$ so $v = 3.70944$ so 3.71 m s ⁻¹ (3 s. f.) or 15g - T = 15a $T - 12g - 11g = 20aso a = -2.24v^2 = 4^2 + 2 \times (-2.24) \times 0.5so 3.71 m s-1 (3 s. f.)$	M1 B1 A1 A1 M1 A1	Use of work-energy. KE, GPE and WD against friction terms present. ^A GPE correct inc sign (1.5g J loss) All correct cao N2L in 1 or 2 equations. All terms present cao Use of appropriate (sequence of) <i>uvast</i> cao	3
				4 16