ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

Mechanics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book
OCR Supplied Materials:

- Printed Answer Book 4761
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

- Scientific or graphical calculator

Tuesday 15 June 2010
 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Printed Answer Book.
- The questions are on the inserted Question Paper.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your Candidate Number, Centre Number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{m} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .
- The Printed Answer Book consists of 12 pages. The Question Paper consists of $\mathbf{8}$ pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

- Do not send this Question Paper for marking; it should be retained in the centre or destroyed.

Section A (36 marks)

1 An egg falls from rest a distance of 75 cm to the floor.
Neglecting air resistance, at what speed does it hit the floor?

2 Fig. 2 shows a sack of rice of weight 250 N hanging in equilibrium supported by a light rope AB . End A of the rope is attached to the sack. The rope passes over a small smooth fixed pulley.

Fig. 2

Initially, end B of the rope is attached to a vertical wall as shown in Fig. 2.
(i) Calculate the horizontal and the vertical forces acting on the wall due to the rope.

End B of the rope is now detached from the wall and attached instead to the top of the sack. The sack is in equilibrium with both sections of the rope vertical.
(ii) Calculate the tension in the rope.

3 The three forces $\left(\begin{array}{c}-1 \\ 14 \\ -8\end{array}\right) \mathrm{N},\left(\begin{array}{r}3 \\ -9 \\ 10\end{array}\right) \mathrm{N}$ and $\mathbf{F} \mathbf{N}$ act on a body of mass 4 kg in deep space and give it an acceleration of $\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right) \mathrm{m} \mathrm{s}^{-2}$.
(i) Calculate \mathbf{F}.

At one instant the velocity of the body is $\left(\begin{array}{r}-3 \\ 3 \\ 6\end{array}\right) \mathrm{m} \mathrm{s}^{-1}$.
(ii) Calculate the velocity and also the speed of the body 3 seconds later.

4 As shown in Fig. 4, boxes P and Q are descending vertically supported by a parachute. Box P has mass 75 kg . Box Q has mass 25 kg and hangs from box P by means of a light vertical wire. Air resistance on the boxes should be neglected.

At one stage the boxes are slowing in their descent with the parachute exerting an upward vertical force of 1030 N on box P . The acceleration of the boxes is $a \mathrm{~m} \mathrm{~s}^{-2}$ upwards and the tension in the wire is $T \mathrm{~N}$.

Fig. 4
(i) Draw a labelled diagram showing all the forces acting on box P and another diagram showing all the forces acting on box Q .
(ii) Write down separate equations of motion for box P and for box Q .
(iii) Calculate the tension in the wire.

5 In this question the unit vectors \mathbf{i} and \mathbf{j} are pointing east and north respectively.
(i) Calculate the bearing of the vector $-4 \mathbf{i}-6 \mathbf{j}$.

The vector $-4 \mathbf{i}-6 \mathbf{j}+k(3 \mathbf{i}-2 \mathbf{j})$ is in the direction $7 \mathbf{i}-9 \mathbf{j}$.
(ii) Find k.

6 A small ball is kicked off the edge of a jetty over a calm sea. Air resistance is negligible. Fig. 6 shows

- the point of projection, O ,
- the initial horizontal and vertical components of velocity,
- the point A on the jetty vertically below O and at sea level,
- the height, OA, of the jetty above the sea.

Fig. 6

The time elapsed after the ball is kicked is t seconds.
(i) Find an expression in terms of t for the height of the ball above O at time t. Find also an expression for the horizontal distance of the ball from O at this time.
(ii) Determine how far the ball lands from A.

Section B (36 marks)
7 A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time t seconds is y metres. The displacement-time graph for the motion during the time interval $0 \leqslant t \leqslant 4$ is shown in Fig. 7.

Fig. 7
(i) Using the graph, determine for the time interval $0 \leqslant t \leqslant 4$
(A) the greatest displacement of P above its position when $t=0$,
(B) the greatest distance of P from its position when $t=0$,
(C) the time interval in which P is moving downwards,
(D) the times when P is instantaneously at rest.

The displacement of P in the time interval $0 \leqslant t \leqslant 3$ is given by $y=-4 t^{2}+8 t+12$.
(ii) Use calculus to find expressions in terms of t for the velocity and for the acceleration of P in the interval $0 \leqslant t \leqslant 3$.
(iii) At what times does P have a speed of $4 \mathrm{~m} \mathrm{~s}^{-1}$ in the interval $0 \leqslant t \leqslant 3$?

In the time interval $3 \leqslant t \leqslant 4$, P has a constant acceleration of $32 \mathrm{~m} \mathrm{~s}^{-2}$. There is no sudden change in velocity when $t=3$.
(iv) Find an expression in terms of t for the displacement of P in the interval $3 \leqslant t \leqslant 4$.

8 A cylindrical tub of mass 250 kg is on a horizontal floor. Resistance to its motion other than that due to friction is negligible.

The first attempt to move the tub is by pulling it with a force of 150 N in the \mathbf{i} direction, as shown in Fig. 8.1.

Fig. 8.1
(i) Calculate the acceleration of the tub if friction is ignored.

In fact, there is friction and the tub does not move.
(ii) Write down the magnitude and direction of the frictional force opposing the pull.

Two more forces are now added to the 150 N force in a second attempt to move the tub, as shown in Fig. 8.2.

Fig. 8.2

Angle θ is acute and chosen so that the resultant of the three forces is in the \mathbf{i} direction.
(iii) Determine the value of θ and the resultant of the three forces.

With this resultant force, the tub moves with constant acceleration and travels 1 metre from rest in 2 seconds.
(iv) Show that the magnitude of the friction acting on the tub is 661 N , correct to 3 significant figures.

When the speed of the tub is $1.8 \mathrm{~m} \mathrm{~s}^{-1}$, it comes to a part of the floor where the friction on the tub is 200 N greater. The pulling forces stay the same.
(v) Find the velocity of the tub when it has moved a further 1.65 m .

Q 1		mark	notes
(i)	$v^{2}=0^{2}+2 \times 9.8 \times 0.75$ $v= \pm 3.8340 \ldots \text { so } 3.83 \mathrm{~m} \mathrm{~s}^{-1} \text { (3. s. f.) }$	M1 A1 A1	Use of $v^{2}=u^{2}+2 a s$ with $u=0$ and $a= \pm g$. Accept muddled units and sign errors. Allow wrong or wrongly converted units not sign errors cao [SC2 for $38.3 \ldots$ seen WWW and SC3 for $3.83 \ldots$ seen WWW]
		3	

Q 2		mark	notes
(i)	Resolving $\begin{aligned} & \leftarrow 250 \sin 70=234.92 \ldots \text { so } 235 \mathrm{~N}(3 \text { s. f. }) \\ & \uparrow 250 \cos 70=85.5050 \ldots \text { so } 85.5 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$	M1 A1 A1 3	Resolving in at least 1 of horiz or vert. Accept $\sin \leftrightarrow \cos$. No extra terms. Either both expressions correct (neglect direction) or one correct in correct direction cao Both evaluated and directions correct
(ii)	$250 \div 2=125 \mathrm{~N}$	$\mathrm{B} 1$	Accept 125 g only if tension taken to be 250 g in (i)
		4	

Q 3		mark	notes
(i)	$\left(\begin{array}{c} -1 \\ 14 \\ -8 \end{array}\right)+\left(\begin{array}{c} 3 \\ -9 \\ 10 \end{array}\right)+\mathbf{F}=4\left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right)$ $\mathbf{F}=\left(\begin{array}{c} -6 \\ 3 \\ 14 \end{array}\right)$	M1 M1 A1 A1 4	N2L. Allow sign errors in applying N2L. Do not condone $\mathbf{F}=m g a$. Allow one given force omitted. Attempt to add $\left(\begin{array}{l}-1 \\ 14 \\ -8\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -9 \\ 10\end{array}\right)$ Two components correct cao
(ii)	$\mathbf{v}=\left(\begin{array}{c} -3 \\ 3 \\ 6 \end{array}\right)+3\left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right)=\left(\begin{array}{c} -6 \\ 9 \\ 18 \end{array}\right) \text { so }\left(\begin{array}{c} -6 \\ 9 \\ 18 \end{array}\right) \mathrm{m} \mathrm{~s}^{-1} .$ speed is $\sqrt{(-6)^{2}+9^{2}+18^{2}}=21 \mathrm{~m} \mathrm{~s}^{-1}$.	M1 A1 M1 F1	$\mathbf{v}=\mathbf{u}+t \mathbf{a}$ with given \mathbf{u} and \mathbf{a}. Could go via s. If integration used, require arbitrary constant (need not be evaluated) cao isw Allow -6^{2} even if interpreted as -36 . Only FT their \mathbf{v}. FT their \mathbf{v} only. [Award M1 F1 for 21 seen WWW]
		8	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Q4 } & & \text { mark } & \\
\hline \text { (i) } & \begin{array}{l}\text { Diagram for P or Q } \\
\text { Other diagram }\end{array} & \begin{array}{l}\text { B1 } \\
\text { B1 }\end{array} & \begin{array}{l}\text { Must be properly labelled with arrows } \\
\text { Must be properly labelled with arrows consistent with } \\
1^{\text {st }} \text { diagram } \\
\text { Accept single diagram if clear. }\end{array} \\
\hline \text { (ii) } & \begin{array}{l}\text { Let tension in rope be } T \mathrm{~N} \text { and accn } \uparrow a \mathrm{~m} \mathrm{~s}^{-2}\end{array} & \text { M1 } & \begin{array}{l}\text { N2L applied correctly to either part. Allow } F=\text { mga } \\
\text { and sign errors. Do not condone missing or extra } \\
\text { forces. }\end{array} \\
\hline \begin{array}{l}\text { For box P: N2L } \uparrow \\
1030-75 g-T=75 a \\
\text { For box Q: N2L } \uparrow \\
T-25 g=25 a\end{array} & \text { A1 } & \text { A1 } & \begin{array}{l}\text { Direction of } a \text { consistent with equation for P. [Condone } \\
\text { taking + ve downwards in either equation. }+ \text { ve } \\
\text { direction must be consistent in both equations to }\end{array}
$$

receive both A1s]\end{array}\right]\)| 3 |
| :--- |

Q 5		mark	notes
(i)	$\begin{aligned} & 270-\arctan \left(\frac{6}{4}\right) \\ & =213.69 \ldots \text { so } 214^{\circ} \end{aligned}$	M1 A1 2	Award for $\arctan p$ seen where $p= \pm \frac{6}{4}$ or $\frac{4}{6}$, or equivalent cao
(ii)	Need $(-4+3 k) \mathbf{i}+(-6-2 k) \mathbf{j}=\lambda(7 \mathbf{i}-9 \mathbf{j}) *$ either so $\frac{-4+3 k}{-6-2 k}=\frac{7}{-9}$. or equivalent $k=6$ or $\begin{aligned} & -4+3 k=7 \lambda \\ & -6-2 k=-9 \lambda \\ & k=6 \end{aligned}$ trial and error method	M1 M1 A1 A1 M1 A1 A1	Attempt to get LHS in the direction of $(7 \mathbf{i}-9 \mathbf{j})$. Could be done by finding (tangents of) angles. Accept the use of $\lambda=1$. Attempt to solve their *. Allow $=\frac{7}{9}, \frac{9}{7},-\frac{9}{7}$ Expression correct Award full marks for $k=6$ found WWW Attempt to solve their *. Must have both equations. Correct equations Award full marks for $k=6$ found WWW M1 any attempt to find the value of k and 'test' M1 Systematic attempt in (the equivalent of) their * Award full marks for $k=6$ found WWW
		6	

Q6		mark	notes
(i)	Vertically $y=8 t-4.9 t^{2}$ Horizontally $x=12 t$	M1 A1 B1	Use of $s=u t+0.5 a t^{2}$ with $g= \pm 9.8, \pm 10$. Accept $u=0$ or $14.4 \ldots$ or $14.4 \sin \theta$ or $u \sin \theta$ but not 12. Allow use of +3.6 . Accept derivation of -4.9 not clear. cao.
(ii)	either Require $y=-3.6$ so $-3.6=8 t-4.9 t^{2}$ Use of formula or $4.9(t-2)\left(t+\frac{18}{49}\right)=0$ Roots are 2 and $-\frac{18}{49}(=-0.367346 \ldots)$ Horizontal distance is $12 \times 2=24$ so 24 m or Require $y=-3.6$ so $-3.6=8 t-4.9 t^{2}$ Eliminate t between $x=12 t$ and $-3.6=8 t-4.9 t^{2}$ so $0=3.6+\frac{8 x}{12}-\frac{4.9 x^{2}}{144}$ Use of formula or factorise + ve root is 24 so 24 m or Methods that divide the motion into sections Projection to highest point (A) Highest point to level of jetty (B) Level of jetty to sea (C) Combination of A, B and C may be used (A) 0.8163.. s; 9.7959.. m: (B) $0.816 \ldots \mathrm{~s}$; 9.7959.. m (C): $0.3673 \ldots \mathrm{~s} ; 4.4081 \ldots \mathrm{~m}$	M1 M1 A1 M1 F1 M1 M1 A1 M1 F1 M1 M1 A1 A1 A1 \square	Equating their y to ± 3.6 or equiv. Any form. A method for solving a 3 term quadratic to give at least 1 root. Allow their y and re-arrangement errors. WWW. Accept no reference to $2^{\text {nd }}$ root [Award SC3 for $t=2$ seen WWW] FT their \boldsymbol{x} and t. FT only their t (as long as it is +ve and is not obtained with sign error(s) e.g. - ve sign just dropped) Equating their y to ± 3.6 or equiv. Any form. Expressions in any form. Elimination must be complete Accept in any form. May be implied. A method for solving a 3 term quadratic to give at least 1 root. Allow their y and re-arrangement errors. FT from their quadratic after re-arrangement. Must be +ve . Attempt to find times or distances for sections that give the total horizontal distance travelled Correct method for one section to find time or distance Any time or distance for a section correct $2^{\text {nd }}$ time or distance correct (The two sections must not be A and B) cao
		8	

Q 7		mark	notes
(i) (A) (B) (C) (D)	$\begin{aligned} & 4 \mathrm{~m} \\ & 12-(-4)=16 \mathrm{~m} \\ & 1<t<3.5 \\ & t=1, t=3.5 \end{aligned}$	B1 M1 A1 B1 B1 B1 6	Looking for distance. Need evidence of taking account of $+v e$ and -ve displacements. The values 1 and 3.5 Strict inequality Do not award if extra values given.
(ii)	$\begin{aligned} & v=-8 t+8 \\ & a=-8 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { F1 } \\ & \hline \quad 3 \\ & \hline \hline \end{aligned}$	Differentiating
(iii)	$\begin{aligned} & -8 t+8=4 \text { so } t=0.5 \text { so } 0.5 \mathrm{~s} \\ & -8 t+8=-4 \text { so } t=1.5 \text { so } 1.5 \mathrm{~s} \end{aligned}$	B1 B1 2	FT their v. FT their v.
(iv)	method 1 Need velocity at $t=3$ $v(3)=-8 \times 3+8=-16$ either $\begin{aligned} & v=\int 32 \mathrm{~d} t=32 t+C \\ & v=-16 \text { when } t=3 \text { gives } v=32 t-112 \\ & y=\int(32 t-112) \mathrm{d} t=16 t^{2}-112 t+D \end{aligned}$ $y=0$ when $t=3$ gives $y=16 t^{2}-112 t+192$ or $y=-16 \times(t-3)+\frac{1}{2} \times 32 \times(t-3)^{2}$ (so $y=16 t^{2}-112 t+192$) method 2 Since acen is constant, the displacement y is a quadratic function. Since we have $y=0$ at $t=3$ and $t=4$ $y=k(t-3)(\mathrm{t}-4)$ When $t=3.5, y=-4$ so $-4=k \times \frac{1}{2} \times-\frac{1}{2}$ so $k=16\left(\right.$ and $\left.y=16 t^{2}-112 t+192\right)$	B1 M1 A1 B1 M1 A1 5	FT their v from (ii) Accept $32 t+C$ or $32 t$. SC1 if $\int_{3}^{4} 32 \mathrm{~d} t$ attempted. Use of their -16 from an attempt at v when $t=3$ FT their v of the form $p t+q$ with $p \neq 0$ and $q \neq 0$. Accept if at least 1 term correct. Accept no D. cao. Use of $s=u t+\frac{1}{2} a t^{2}$ Use of their $-16($ not 0$)$ from an attempt at v when $t=3$ and 32. Condone use of just t Use of $t \pm 3$ cao Use of a quadratic function (condone no k) Correct use of roots k present Or consider velocity at $t=3$ cao. Accept k without y simplified.
		16	

Q8		mark	notes
(i)	N2L i direction $\begin{aligned} & 150=250 a \\ & a=0.6 \text { so } 0.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Use of N2L. Allow $F=m g a$. Accept no reference to direction
(ii)	$\begin{aligned} & 150 \mathrm{~N} \\ & -\mathbf{i} \text { direction } \end{aligned}$	B1 B1 2	Allow correct description or arrow [Accept '- 150 in i direction' for B1 B1]
(iii)	For force only in direction perp to \mathbf{i} $300 \sin 40=450 \sin \theta$ $\theta=25.37300 \ldots$ so 25.4° (3 s. f.) In \mathbf{i} direction $300 \cos 40+150+450 \cos \theta$ $786.4017 \ldots$ so $786 \mathbf{i} \mathrm{~N}$ (3 s. f.)	M1 B1 A1 M1 A1 A1 6	Resolution of both terms attempted. Allow $\sin \leftrightarrow \cos$ if in both terms. Allow 250 or 250 g present. $300 \sin 40$ or $450 \sin \theta$ Accept \pm. Accept answer rounding to 25.5. Allow SC1 if seen in this part. Proper resolution attempted of 450 and 300. Allow $\sin \leftrightarrow \cos$ if in both terms Accept use of their θ or just θ. Either resolution correct. Accept their θ or just θ. Accept \sin / cos consistent with use for cpt perpendicular to \mathbf{i}. Accept no reference to direction cao. Allow SC1 WW
(iv)	$\begin{aligned} & \text { Using } s=u t+0.5 a t^{2} \\ & 1=0.5 a \times 2^{2} \\ & a=0.5 \end{aligned}$ Using N2L in \mathbf{i} direction $786.4017 \ldots-F=250 \times 0.5$ $661.4017 \ldots \text { so } 661 \mathrm{~N}(3 \text { s. f.) }$	M1 A1 M1 A1 E1 5	Appropriate (sequence of) suvat [WW M0 A0] Use of $F=m a$ with their 786.4 and their a. No extra forces. Allow sign errors. All correct using their 786.4 and a Use of N2L clearly shown. (Accept 0.5 used WW)
(v)	Using N2L in \mathbf{i} direction either $125-200=250 a_{1}$ or (starting again) $786.4017 \ldots-(200+661.4017 \ldots)=250 a_{1}$ so $a_{1}=-0.3$ Using $v^{2}=u^{2}+2 a_{1} \mathrm{~S}$ $\begin{aligned} & v^{2}=1.8^{2}+2 \times(-0.3) \times 1.65 \\ & v=1.5 \text { so } 1.5 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \\ \text { F1 } \\ \text { M1 } \\ \text { F1 } \\ \text { F1 } \\ \text { A1 } \\ \hline \end{array}$	Use of $F=m a$ with their values. Allow 1 force missing FT only their $786 \ldots$ and their 661 Appropriate (sequence of) suvat with $u \neq 0$. Must be 'new' a obtained by using N2L. Only FT use of \pm their a_{1} cao
		20	

