OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4761

Mechanics 1
Tuesday 7 JUNE $2005 \quad$ Afternoon
Additional materials:
Answer booklet
Graph paper 30 minutes
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{m} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $\mathrm{g}=9.8$.
- The total number of marks for this paper is 72.

Section A (36 marks)
1 A particle travels along a straight line. Its acceleration during the time interval $0 \leqslant t \leqslant 8$ is given by the acceleration-time graph in Fig. 1.

Fig. 1
(i) Write down the acceleration of the particle when $t=4$. Given that the particle starts from rest, find its speed when $t=4$.
(ii) Write down an expression in terms of t for the acceleration, $a \mathrm{~ms}^{-2}$, of the particle in the time interval $0 \leqslant t \leqslant 4$.
(iii) Without calculation, state the time at which the speed of the particle is greatest. Give a reason for your answer.
(iv) Calculate the change in speed of the particle from $t=5$ to $t=8$, indicating whether this is an increase or a decrease.

2 A particle moves along the x-axis with velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, at time t given by

$$
v=24 t-6 t^{2}
$$

The positive direction is in the sense of x increasing.
(i) Find an expression for the acceleration of the particle at time t.
(ii) Find the times, t_{1} and t_{2}, at which the particle has zero speed.
(iii) Find the distance travelled between the times t_{1} and t_{2}.

3 A particle rests on a smooth, horizontal plane. Horizontal unit vectors \mathbf{i} and \mathbf{j} lie in this plane. The particle is in equilibrium under the action of the three forces $(-3 \mathbf{i}+4 \mathbf{j}) \mathrm{N}$ and $(21 \mathbf{i}-7 \mathbf{j}) \mathrm{N}$ and $\mathbf{R N}$.
(i) Write down an expression for \mathbf{R} in terms of \mathbf{i} and \mathbf{j}.
(ii) Find the magnitude of \mathbf{R} and the angle between \mathbf{R} and the \mathbf{i} direction.

4 A block of mass 4 kg is in equilibrium on a rough plane inclined at 60° to the horizontal, as shown in Fig. 4. A frictional force of 10 N acts up the plane and a vertical string AB attached to the block is in tension.

Fig. 4
(i) Draw a diagram showing the four forces acting on the block.
(ii) By considering the components of the forces parallel to the slope, calculate the tension in the string.
(iii) Calculate the normal reaction of the plane on the block.

5 The position vector of a particle at time t is given by

$$
\mathbf{r}=\frac{1}{2} t \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}
$$

referred to an origin \mathbf{O} where \mathbf{i} and \mathbf{j} are the standard unit vectors in the directions of the cartesian axes $\mathrm{O} x$ and $\mathrm{O} y$ respectively.
(i) Write down the value of t for which the x-coordinate of the position of the particle is 2 . Find the y-coordinate at this time.
(ii) Show that the cartesian equation of the path of the particle is $y=4 x^{2}-1$.
(iii) Find the coordinates of the point where the particle is moving at 45° to both $\mathrm{O} x$ and Oy . [3]

Section B (36 marks)
6 A car of mass 1000 kg is travelling along a straight, level road.

Fig. 6.1
(i) Calculate the acceleration of the car when a resultant force of 2000 N acts on it in the direction of its motion.

How long does it take the car to increase its speed from $5 \mathrm{~m} \mathrm{~s}^{-1}$ to $12.5 \mathrm{~ms}^{-1}$?
The car has an acceleration of $1.4 \mathrm{~m} \mathrm{~s}^{-2}$ when there is a driving force of 2000 N .
(ii) Show that the resistance to motion of the car is 600 N .

A trailer is now atached to the car, as shown in Fig. 6.2. The car still has a driving force of 2000 N and resistance to motion of 600 N . The trailer has a mass of 800 kg . The tow-bar connecting the car and the trailer is light and horizontal. The car and trailer are accelerating at $0.7 \mathrm{~ms}^{-2}$.

Fig. 6.2
(iii) Show that the resistance to the motion of the trailer is 140 N .
(iv) Calculate the force in the tow-bar.

The driving force is now removed and a braking force of 610 N is applied to the car. All the resistances to motion remain as before. The trailer has no brakes.
(v) Calculate the new acceleration. Calculate also the force in the tow-bar, stating whether it is a tension or a thrust (compression).

7 In this question take the value of g to be $10 \mathrm{~m} \mathrm{~s}^{-2}$.

A particle A is projected over horizontal ground from a point P which is 9 m above a point O on the ground. The initial velocity has horizontal and vertical components of $10 \mathrm{~ms}^{-1}$ and $12 \mathrm{~ms}^{-1}$ respectively, as shown in Fig. 7. The trajectory of the particle meets the ground at X. Air resistance may be neglected.

Fig. 7
(i) Calculate the speed of projection $u \mathrm{~ms}^{-1}$ and the angle of projection θ°.
(ii) Show that, t seconds after projection, the height of particle A above the ground is $9+12 t-5 t^{2}$. Write down an expression in terms of t for the horizontal distance of the particle from O at this time.
(iii) Calculate the maximum height of particle A above the point of projection.
(iv) Calculate the distance OX.

A second particle, B, is projected from O with speed $20 \mathrm{~ms}^{-1}$ at 60° to the horizontal. The trajectories of A and B are in the same vertical plane. Particles A and B are projected at the same time.
(v) Show that the horizontal displacements of A and B are always equal.
(vi) Show that, t seconds after projection, the height of particle B above the ground is $10 \sqrt{3} t-5 t^{2}$.
(vii) Show that the particles collide 1.7 seconds after projection (correct to two significant figures).

Q 1		mark		Sub
(i)	Acceleration is $8 \mathrm{~m} \mathrm{~s}^{-2}$ speed is $0+0.5 \times 4 \times 8=16 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		2
(ii)	$a=2 t$	B1		1
(iii)	$t=7$ $a>0$ for $t<7$ and $a<0$ for $t>7$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	Full reason required	2
(iv)	Area under graph $0.5 \times 2 \times 8-0.5 \times 1 \times 4=6 \text { so } 6 \mathrm{~m} \mathrm{~s}^{-1}$ Increase	M1 B1 E1	Both areas under graph attempted. Accept both positive areas. If 2×3 seen accept ONLY IF reference to average accn has been made. Award for $v=-2 t^{2}+28 t+c$ seen or 24 and 30 seen Award if 6 seen. Accept ' 24 to 30 '. This must be clear. Mark dept. on award of M1	3
	total	8		

Q 2		mark		Sub
(i)	$a=24-12 t$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Differentiate cao	2
(ii)	Need $24 t-6 t^{2}=0$ $t=0,4$	M1 A1	Equate $v=0$ and attempt to factorise (or solve). Award for one root found. Both. cao.	2
(iii)	$\begin{aligned} & s=\int_{0}^{4}\left(24 t-6 t^{2}\right) \mathrm{d} t \\ & =\left[12 t^{2}-2 t^{3}\right]_{0}^{4} \\ & (12 \times 16-2 \times 64)-0 \\ & =64 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1	Attempt to integrate. No limits required. Either term correct. No limits required Sub $t=4$ in integral. Accept no bottom limit substituted or arb const assumed 0 . Accept reversed limits. FT their limits. cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s. f. A1 (dep on $2^{\text {nd }} \mathrm{M} 1$) One strip area correct: A1 cao]	4
	total	8		

Q 3		mark		Sub
(i)	$\begin{aligned} & \mathbf{R}+\binom{-3}{4}+\binom{21}{-7}=\binom{0}{0} \\ & \mathbf{R}=\binom{-18}{3} \end{aligned}$	M1 A1	Sum to zero Award if seen here or in (ii) or used in (ii). $\left[\right.$ SC1for $\left.\binom{18}{-3}\right]$	2
(ii)	$\begin{aligned} & \|\mathbf{R}\|=\sqrt{18^{2}+3^{2}} \\ & =18.248 \ldots \text { so } 18.2 \mathrm{~N}(3 \mathrm{s.f.}) \\ & \text { angle is } 180-\arctan \left(\frac{3}{18}\right)=170.53 \ldots{ }^{\circ} \\ & \text { so } 171^{\circ}(3 \mathrm{~s} . \text { f. }) \end{aligned}$	M1 A1 M1 A1	Use of Pythagoras Any reasonable accuracy. FT R (with 2 non-zero cpts) Allow arctan $\left(\frac{ \pm 3}{ \pm 18}\right)$ or $\arctan \left(\frac{ \pm 18}{ \pm 3}\right)$ Any reasonable accuracy. FT R provided their angle is obtuse but not 180°	4
	total	6		

Q 4		mark		Sub
(i)		B1	All forces present. No extras. Accept $m g$, w etc. All labelled with arrows. Accept resolved parts only if clearly additional. Accept no angles	1
(ii)	Resolve parallel to the plane $10+T \cos 30=4 g \cos 30$ $T=27.65299 \ldots \text { so } 27.7 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 A1	All terms present. Must be resolution in at least 1 term. Accept $\sin \leftrightarrow \cos$. If resolution in another direction there must be an equation only in T with no forces omitted. No extra forces. All correct Any reasonable accuracy	3
(iii)	Resolve perpendicular to the plane $R+0.5 T=2 g$ $R=5.7735 \ldots \text { so } 5.77 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 A1	At least one resolution correct. Accept resolution horiz or vert if at least 1 resolution correct. All forces present. No extra forces. Correct. FT Tif evaluated. Any reasonable accuracy. cao.	3
	total	7		

Q 5		mark		Sub
(i)	$\begin{aligned} & x=2 \Rightarrow t=4 \\ & t=4 \Rightarrow y=16-1=15 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { F1 } \end{aligned}$	cao FT their t and y. Accept $15 \mathbf{j}$	2
(ii)	$x=\frac{1}{2} t \text { and } y=t^{2}-1$ Eliminating t gives $y=\left((2 x)^{2}-1\right)=4 x^{2}-1$	M1 E1	Attempt at elimination of expressions for x and y in terms of t Accept seeing $(2 x)^{2}-1=4 x^{2}-1$	2
(iii)	either We require $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ so $8 x=1$ $x=\frac{1}{8}$ and the point is $\left(\frac{1}{8},-\frac{15}{16}\right)$ or Differentiate to find \mathbf{v} equate \mathbf{i} and \mathbf{j} cpts so $t=\frac{1}{4}$ and the point is $\left(\frac{1}{8},-\frac{15}{16}\right)$	M1 B1 A1 M1 M1 A1	This may be implied Differentiating correctly to obtain $8 x$ Equating the \mathbf{i} and \mathbf{j} cpts of their \mathbf{v}	3
	total	7		

Q 6		mark		b
(i)	$2000=1000 a \text { so } a=2 \text { so } 2 \mathrm{~m} \mathrm{~s}^{-2}$ $12.5=5+2 t \text { so } t=3.75 \text { so } 3.75 \mathrm{~s}$	B1 M1 A1	Use of appropriate uvast for t cao	3
(ii)	$\begin{aligned} & 2000-R=1000 \times 1.4 \\ & R=600 \text { so } 600 \mathrm{~N} \text { (AG) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	N2L. Accept $F=m g a$. Accept sign errors. Both forces present. Must use $a=1.4$	2
(iii)	$2000-600-S=1800 \times 0.7$ $S=140 \text { so } 140 \mathrm{~N} \text { (AG) }$	M1 A1 E1	N2L overall or 2 paired equations. $F=m a$ and use 0.7. Mass must be correct. Allow sign errors and 600 omitted. All correct Clearly shown	3
(iv)	$T-140=800 \times 0.7$ $T=700 \text { so } 700 \mathrm{~N}$	M1 B1 A1	N2L on trailer (or car). $F=800 a$ (or $1000 a$). Condone missing resistance otherwise all forces present. Condone sign errors. Use of 140 (or $2000-600$) and 0.7	
(v)	N2L in direction of motion car and trailer $-600-140-610=1800 a$ $a=-0.75$ For trailer $T-140=-0.75 \times 800$ so $T=-460$ so 460 thrust	M1 A1 A1 M1 A1 F1	Use of $F=1800 a$ to find new accn. Condone 2000 included but not T. Allow missing forces. All forces present; no extra ones Allow sign errors. Accept \pm. cao. N2L with their $a(\neq 0.7)$ on trailer or car. Must have correct mass and forces. Accept sign errors cao. Accept ± 460 Dep on M1. Take tension as +ve unless clear other convention	6
	total	17		

Q 7		mark		Sub
(i)	$\begin{aligned} & u=\sqrt{10^{2}+12^{2}}=15.62 . . \\ & \theta=\arctan \left(\frac{12}{10}\right)=50.1944 \ldots \text { so } 50.2 \text { (3s.f.) } \end{aligned}$	B1 M1 A1	Accept any accuracy 2 s. f. or better Accept $\arctan \left(\frac{10}{12}\right)$ (Or their $15.62 \cos \theta=10$ or their $15.62 \sin \theta=12$) [FT their 15.62 if used] [If θ found first M1 A1 for θ F1 for u] [If B0 M0 SC1 for both $u \cos \theta=10$ and $u \sin \theta=12$ seen]	3
(ii)	$\text { vert } \quad 12 t-0.5 \times 10 t^{2}+9$ $=12 t-5 t^{2}+9 \quad(\mathrm{AG})$ horiz $10 t$	M1 A1 E1 B1	Use of $s=u t+0.5 a t^{2}, a= \pm 9.8$ or ± 10 and $u=12$ or 15.62.. Condone $-9=12 t-0.5 \times 10 t^{2}$, condone $y=9+12 t-0.5 \times 10 t^{2}$. Condone g. All correct with origin of $u=12$ clear; accept 9 omitted Reason for 9 given. Must be clear unless $y=s_{0}+\ldots$ used.	4
(iii)	$\begin{aligned} & 0=12^{2}-20 s \\ & s=7.2 \text { so } 7.2 \mathrm{~m} \end{aligned}$	M1 A1	Use of $v^{2}=u^{2}+2$ as or equiv with $u=12, v=0$. Condone $u \leftrightarrow v$ From CWO. Accept 16.2.	2
(iv)	We require $0=12 t-5 t^{2}+9$ Solve for t the + ve root is 3 range is 30 m	M1 M1 A1 F1	Use of y equated to 0 Attempt to solve a 3 term quadratic Accept no reference to other root. cao. FT root and their x. [If range split up M1 all parts considered; M1 valid method for each part; A1 final phase correct; A1]	4
(v)	Horiz displacement of B: $20 \cos 60 t=10 t$ Comparison with Horiz displacement of A	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	Condone unsimplified expression. Award for $20 \cos 60=10$ Comparison clear, must show $10 t$ for each or explain.	2
(vi)	vertical height is $20 \sin 60 t-0.5 \times 10 t^{2}=10 \sqrt{3} t-5 t^{2}(\mathrm{AG})$	A1	Clearly shown. Accept decimal equivalence for $10 \sqrt{3}$ (at least 3 s. f.). Accept $-5 t^{2}$ and $20 \sin 60=10 \sqrt{3}$ not explained.	1
(vii)	$\begin{aligned} & \text { Need } 10 \sqrt{3} t-5 t^{2}=12 t-5 t^{2}+9 \\ & \Rightarrow t=\frac{9}{10 \sqrt{3}-12} \\ & t=1.6915 \ldots \text { so } 1.7 \mathrm{~s}(2 \mathrm{s.f.}) \text { (AG) } \end{aligned}$	M1 A1 E1	Equating the given expressions Expression for t obtained in any form Clearly shown. Accept 3 s. f. or better as evidence. Award M1 A1 E0 for 1.7 sub in each ht	3
	total	19		

