Wednesday 14 June 2017 - Morning

QUESTION PAPER

Candidates answer on the Printed Answer Book.
OCR supplied materials:
Duration: 1 hour 30 minutes

- Printed Answer Book 4771/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:
Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the barcodes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of 12 pages. The Question Paper consists of $\mathbf{8}$ pages. Any blank pages are indicated.

INSTRUCTIONS TO EXAMS OFFICER/INVIGILATOR

- Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (24 marks)

1 Pippa is planning an irrigation system for a new garden. The graph shows the water tap, the plants and trees which need to be watered, and possible routes for the irrigation pipes.

The lengths of possible pipe runs (m) are given in the table.

	W	A	B	C	D	E	F	G	H	I
W		10							40	20
A	10		17							
B		17		7						
C			7		12					18
D				12		8				
E					8		14			11
F						14		5		15
G							5		6	
H	40							6		18
I	20			18		11	15		18	

(i) Starting at W, use Prim's algorithm in tabular form to find the least length of pipe that is needed for the system. Give the length of pipe and draw the connections that are used in this solution.

In fact, Pippa decides to connect the Inula directly to the water tap and then to use all of the direct connections from the Inula. The Almond, Buddleia, Delphiniums and Gooseberries she will subsequently connect in optimally.
(ii) Draw Pippa's connections. Give the minimum length of pipe she will need for this solution, and give a reason why she might choose it.

2 The following is an algorithm for 'shop subtraction'. It applies to two whole numbers, each between 0 and 999.
10 Let P be the smaller number

20 Let M be the larger number

30 Let C be 0

40 If $\mathrm{P}+\mathrm{C}+100>\mathrm{M}$ then goto 70

50 Let $\mathrm{C}=\mathrm{C}+100$

60 Goto 40

70 If $\mathrm{P}+\mathrm{C}+10>\mathrm{M}$ then goto 100

80 Let $\mathrm{C}=\mathrm{C}+10$

90 Goto 70

100 If $\mathrm{P}+\mathrm{C}+1>\mathrm{M}$ then goto 130

110 Let $\mathrm{C}=\mathrm{C}+1$

120 Goto 100

130 Print ‘The answer is' C
(i) Apply the algorithm to the numbers 112 and 250 . Show the steps as you apply them and give the answer.
(ii) Show how to modify the algorithm so that it can be applied to numbers between 0 and 9999 .
(iii) What is the connection between the algorithm and giving change for a purchase made in a shop?
$3 \mathrm{~K}_{2,4}$ is the complete bipartite graph on sets of 2 and 4 elements, i.e. all possible ways of joining 2 elements in one set to 4 elements in another set.
(i) Draw $\mathrm{K}_{2,4}$ with no lines crossing.
(ii) Explain how $\mathrm{K}_{2, n}$ can be drawn without any lines crossing for any positive integer n.
(iii) The smallest value of n for which $\mathrm{K}_{3, n}$ cannot be drawn without any lines crossing is $n=3$. Start from a drawing of $\mathrm{K}_{2,3}$ and explain why it is not possible to construct $\mathrm{K}_{3,3}$ from this without having any lines crossing.
It is claimed that the minimum number of line crossings needed to draw $\mathrm{K}_{3, n}$ is given by $\frac{(n-1)^{2}}{4}$ if n is odd and $\frac{n(n-2)}{4}$ if n is even.
(iv) Draw $\mathrm{K}_{3,5}$ with the number of line crossings given by the formula.
(v) Explain the consequences of parts (i) to (iv) for circuit board design.

Section B (48 marks)

4 A nursery has $9000 \mathrm{~m}^{2}$ of land available for growing deciduous trees and evergreen trees from saplings (young trees). Each deciduous tree needs $8 \mathrm{~m}^{2}$ of space, and each evergreen tree needs $6 \mathrm{~m}^{2}$ of space.

The costs of purchasing saplings, labour, fertilisers, etc. are $£ 16$ for each deciduous tree and $£ 16$ for each evergreen tree, and $£ 20000$ is available to invest.

The nursery can obtain at most 800 deciduous saplings for planting, and at most 1000 evergreen saplings.
When the saplings have grown into trees, the nursery sells the deciduous trees for $£ 25$ each, and the evergreen trees for $£ 22$ each.
(i) Calculate the profit which will be made from each deciduous tree and from each evergreen tree.

The nursery manager wants to find how many trees of each type should be grown so as to maximise the profit.
(ii) Formulate the manager's problem as a linear program, ignoring the fact that the numbers of trees must be integers.
(iii) Draw the feasible region for your problem in part (ii), and hence show that the solution to the LP is 800 deciduous trees and $433 \frac{1}{3}$ evergreen trees. Give the maximum profit.
(iv) How much extra profit would be made for an extra $100 \mathrm{~m}^{2}$ of land, still allowing for non-integer solutions?

How much extra profit (compared to your answer to part (iii)) would be made for an extra $1000 \mathrm{~m}^{2}$ of land, still allowing for non-integer solutions?
(v) Saplings have to be purchased in bundles of 50 at a time. For the original problem, with $9000 \mathrm{~m}^{2}$ of land available, find the optimal number of each type of sapling to purchase.

5 John wants to generate integers between 0 and 15 , each being equally likely. He has a coin available. He constructs a table with headings as shown, and with as many rows as he needs.

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

To complete the first row he throws the coin four times, recording the results as a 1 for 'heads' or a 0 for 'tails' in the four columns of the first row, starting from the right and moving left. For example, if he gets two heads, then a tail and then another head, this will be recorded in the table as $1,0,1,1$ (remembering that the order is from the right). He then multiplies the entries in the row by the column headings to get a score. In the example the score is $8+2+1=11$.

So the example has the following result and score:

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
1	0	1	1
\ldots			

(i) Explain why this method generates the scores 0 to 15 , each with the same probability.

John wants to repeat this experiment 64 times. His last 8 coin throws are as follows:
H T T T T H T H
(ii) Compute John's final two scores.

John is trying to simulate a fairground game in which 16 jars are arranged in a square formation, and a ball is repeatedly thrown until it lands in one of them.
(The jars have been numbered to help in the rest of this question.)
When John produces a score, that score corresponds to the number of a jar.
(iii) Explain why John's simulation will not be a good model of reality.

John decides instead to use two-digit random numbers to simulate the game. He decides that he will allocate a probability of $\frac{1}{36}$ for a ball to land in each of the corner jars (jars $00,03,12$ and 15), a probability of $\frac{2}{36}$ for each of the other eight edge jars (jars $01,02,04,07,08,11,13$ and 14), and a probability of $\frac{4}{36}$ for each of the other four jars.
(iv) Give a rule for John to use, i.e. specify which jar should be represented by each two-digit random number.
(v) Use your rule together with the string of two-digit random numbers in the answer book to simulate two repetitions of the game.

6 Pippa owns a garden construction company. She is preparing a quotation for constructing a garden on a $1000 \mathrm{~m}^{2}$ site. Her quotation will need to include an estimate of how long the construction will take.

The tasks, together with limitations on their starting times and durations, are as follows:
A Produce a detailed survey of the site. This must be done before anything else, except that clearing the site can be started at the same time. The surveying will take 1 day.

B Clear the site. This will take 3 days.
C Put forward a plan, debate it and adjust it. This can't be done until the survey is complete. It involves meeting with the client, and will take 3 days.

D Build walls and other fixed features. This cannot be started until the site is cleared and the plan agreed. It will take 3 days.

E Have a specialist contractor install the pond. This cannot be started until the site is cleared and the plan agreed. It will take 5 days.

F Plant the trees. This cannot be started until the walls and other fixed features are completed. It will take 3 days.

G Plant the plants. This cannot be started until the walls and other fixed features are completed. It will take 2 days.

H Install the irrigation. This cannot be started until the trees are planted and the plants are planted. It will take 2 days.
(i) Draw an activity-on-arc precedence network for this project.
(ii) Complete a forward pass and a backward pass to determine the minimum completion time and the critical activities, using the durations given above.

Activities D and E will be contracted to specialist companies. Pippa plans to complete activities $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}$, G and H herself, but she can employ her friend, Afzal, to do or to help with any of these tasks except for A and C. Each of B, F, G and H can be done by two people, with the total time taken by the two of them being the same as the activity duration.
(iii) The project is to be completed in the shortest time. Produce a schedule to achieve this whilst using as little of Afzal's time as possible. Show who does what and when. Give the minimum completion time and give the total time for which Afzal must be employed.
(iv) How long will it take to complete the project if Pippa does not use Afzal at all?

END OF QUESTION PAPER

OCR
 Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

3(i)
\square

$\mathbf{5 (v)}$ Two-digit random numbers:
$\begin{array}{lllllll}01 & 99 & 52 & 67 & 23 & 62 & 85\end{array}$
6 (i) \&
(ii) (iv)

Question		Answer	Marks	Guidance
3	(i)	e.g.	B1	
	(ii)	e.g. as per the above, with top left connected directly and bottom left connected around the back.	B1	
	(iii)		B1 M1 E1	$\mathrm{K}_{2,3}$ seen choice of just two points that cannot be connected on the candidate's graph. dependent on the M1

(iv)	$(5-1) \times(5-1) / 4=4$ crossings e.g.	B1 B1	can be implied
(v)	e.g. They inform about how many layers will be needed.	B1	

Question		Answer			Marks	Guidance
4	(i)	$£ 9$ and £6 respectively			B1	
	(ii)	Let x be the number of deciduous trees and y the number of evergreens.$\begin{array}{ll} \text { Max } & 9 x+6 y \\ \text { st } & 8 x+6 y<9000 \\ & 16 x+16 y<20000 \\ & x<800 \\ & y<1000 \end{array}$			B1 B1 B1 B1 B1	
	(iii)	 Profit is $£ 9800$			B1 B1 B1 B1 B1 B1 B1	labelling and scaling axes line for space constraint line for finance constraint lines for availability constraints feasible region indicated (with 6 or 5 lines correct) for profit at ($800,433 \frac{1}{3}$) and $(750,500)$ or gradient method with gradient -1.5 9800 indicated
	(iv)	$\begin{aligned} & £ 100(\text { at }(800,450)) \\ & £ 100(\text { also at }(800,450)) \end{aligned}$			$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(v)	$(750,500)$ or 15 and 10 bundles (giving $£ 9750$ - but this not required)			B1	

Question			Answer					Marks	Guidance
5	(i)		stating 0000 gives a score of 0 stating 1111 gives a score of 15 all equally likely					B1 B1 B1	or 16 (B1) distinct numbers generated (B1)
	(ii)		$\begin{aligned} & 1 \\ & 10 \end{aligned}$					B1 B1	penultimate last $\mathrm{SC} 1 \ldots 8,5$
	(iii)		The ball will not have an equal probability of landing in each jar					B1	
	(iv)		$\begin{array}{ll} \text { e.g. } & 00,01 \rightarrow 00 \\ & 02,03 \rightarrow 03 \\ & 04,05 \rightarrow 12 \\ & 06,07 \rightarrow 15 \\ & 08-11 \rightarrow 01 \\ 12-15 \rightarrow 02 \\ 16-19 \rightarrow 04 \\ 20-23 \rightarrow 07 \\ 24-27 \rightarrow 08 \\ 28-31 \rightarrow 11 \\ 32-35 \rightarrow 13 \\ 36-39 \rightarrow 14 \\ 40-47 \rightarrow 05 \\ 48-55 \rightarrow 06 \\ 56-63 \rightarrow 09 \\ 64-71 \rightarrow 10 \\ 72-99 \rightarrow \text { reject and repeat } \end{array}$	e.g. corner edge edge corner edge inside inside edge edge inside inside edge corner edge edge corner reject	$\begin{aligned} & 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & 07 \\ & 08 \\ & 09 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$00-01$ $02-05$ $06-09$ $10-11$ $12-15$ $16-23$ $24-31$ $32-35$ $36-39$ $40-47$ $48-55$ $56-59$ $60-61$ $62-65$ $66-69$ $70-71$ $72-99$	2 4 4 2 4 8 8 4 4 8 8 4 2 4 4 2 28	M1 A1 M1 A1 M1 A1 M1 A1	reject some efficient - numbers stated rule for corner jars rule for edge jars rule for inside jars

| | (\mathbf{v}) | e.g. Using the above rule(s), the first ball lands in jar 00(00) and the second in jar 06(10). | B1 B1 | $\sqrt{ }$ subject to last 3 M marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

