Paper Reference(s) 66666/01 Edexcel GCE

Core Mathematics C4

Advanced

Wednesday 18 June 2014 – Afternoon

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. **1.** A curve *C* has the equation

$$x^3 + 2xy - x - y^3 - 20 = 0$$

- (a) Find $\frac{dy}{dx}$ in terms of x and y.
- (b) Find an equation of the tangent to C at the point (3, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers.
 - (2)

(5)

2. Given that the binomial expansion of $(1 + kx)^{-4}$, |kx| < 1, is

$$1 - 6x + Ax^2 + \dots$$

- (a) find the value of the constant k,
- (b) find the value of the constant A, giving your answer in its simplest form.

(3)

(2)

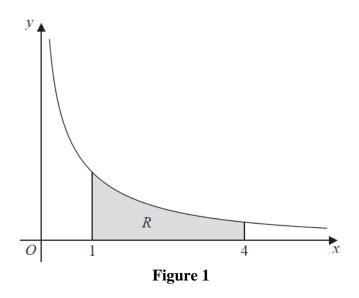


Figure 1 shows a sketch of part of the curve with equation $y = \frac{10}{2x + 5\sqrt{x}}$, x > 0.

The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis, and the lines with equations x = 1 and x = 4.

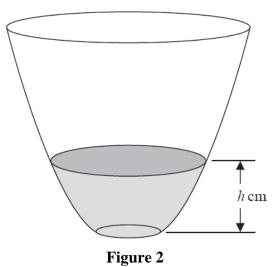
The table below shows corresponding values of x and y for $y = \frac{10}{2x + 5\sqrt{x}}$.

x	1	2	3	4
у	1.42857	0.90326		0.55556

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.


(3)

(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R.

(1)

(d) Use the substitution $u = \sqrt{x}$, or otherwise, to find the exact value of

$$\int_{1}^{4} \frac{10}{2x + 5\sqrt{x}} dx$$
 (6)

A vase with a circular cross-section is shown in Figure 2. Water is flowing into the vase.

When the depth of the water is h cm, the volume of water V cm³ is given by

$$V = 4 \pi h(h+4), \qquad 0 \le h \le 25$$

Water flows into the vase at a constant rate of 80π cm³ s⁻¹.

Find the rate of change of the depth of the water, in cm s⁻¹, when h = 6.

(5)

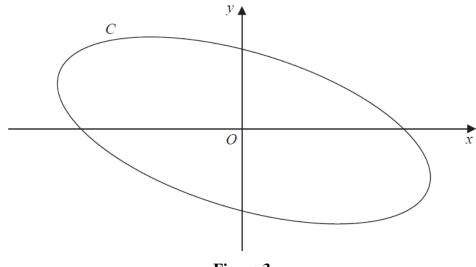


Figure 3 shows a sketch of the curve C with parametric equations

$$x = 4\cos\left(t + \frac{\pi}{6}\right), \qquad y = 2\sin t, \qquad 0 \le t \le 2\pi$$

(*a*) Show that

$$x + y = 2\sqrt{3}\cos t \tag{3}$$

(b) Show that a cartesian equation of C is

$$(x+y)^2 + ay^2 = b$$

where a and b are integers to be determined.

(2)

6. (i) Find

$$\int x e^{4x} dx$$
(3)

(ii) Find

$$\int \frac{8}{(2x-1)^3} dx, \qquad x > \frac{1}{2}$$
(2)

(iii) Given that $y = \frac{\pi}{6}$ at x = 0, solve the differential equation

 $\frac{\mathrm{d}y}{\mathrm{d}x} = e^x \operatorname{cosec} 2y \operatorname{cosec} y$

(7)

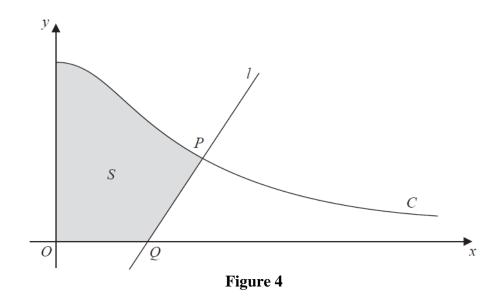


Figure 4 shows a sketch of part of the curve C with parametric equations

$$x = 3\tan \theta$$
, $y = 4\cos^2 \theta$, $0 \le \theta < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates (3, 2).

The line *l* is the normal to *C* at *P*. The normal cuts the *x*-axis at the point *Q*.

(a) Find the x coordinate of the point Q.

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the x-axis, the y-axis and the line l. This shaded region is rotated 2π radians about the x-axis to form a solid of revolution.

(b) Find the exact value of the volume of the solid of revolution, giving your answer in the form $p\pi + q\pi^2$, where p and q are rational numbers to be determined.

[You may use the formula
$$V = \frac{1}{3}\pi r^2 h$$
 for the volume of a cone.]

(6)

(9)

8. Relative to a fixed origin *O*, the point *A* has position vector $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$

and the point *B* has position vector $\begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix}$.

The line l_1 passes through the points *A* and *B*.

- (a) Find the vector \overrightarrow{AB} .
- (b) Hence find a vector equation for the line l_1 .

The point *P* has position vector
$$\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$$
.

Given that angle *PBA* is θ ,

(c) show that
$$\cos\theta = \frac{1}{3}$$
.

The line l_2 passes through the point *P* and is parallel to the line l_1 .

(*d*) Find a vector equation for the line
$$l_2$$
.

The points *C* and *D* both lie on the line l_2 .

Given that AB = PC = DP and the *x* coordinate of *C* is positive,

- (e) find the coordinates of C and the coordinates of D.
- (f) find the exact area of the trapezium ABCD, giving your answer as a simplified surd.

(4)

(3)

TOTAL FOR PAPER: 75 MARKS

END

(2)

(1)

(3)

(2)

Question Number		Scheme	Marks				
1.		$x^3 + 2xy - x - y^3 - 20 = 0$					
(a)		$\left\{\frac{\cancel{x}}{\cancel{x}}\times\right\} \underline{3x^2} + \left(\underline{2y + 2x\frac{dy}{dx}}\right) - 1 - 3y^2 \frac{dy}{dx} = 0$					
		$3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$	dM1				
		$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$	A1 cso				
(b)	At P(3, -2), $m(\mathbf{T}) = \frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}; = \frac{-22}{-6} \text{ or } \frac{11}{3}$	[5]				
	and ei	ther T: $y - 2 = \frac{11}{3}(x - 3)$ see notes	M1				
		or $(-2) = \left(\frac{11}{3}\right)(3) + c \implies c = \dots,$					
	T : 11	x - 3y - 39 = 0 or $K(11x - 3y - 39) = 0$	A1 cso				
			[2] 7				
	Alterr	native method for part (a)					
(a)	$\left\{\frac{\cancel{dx}}{\cancel{dy}} \times\right\} \underbrace{3x^2 \frac{dx}{dy}}_{} + \left(\underbrace{2y \frac{dx}{dy} + 2x}_{} \right) - \frac{dx}{dy} - 3y^2 = 0$						
		$2x - 3y^{2} + (3x^{2} + 2y - 1)\frac{dx}{dy} = 0$					
		$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$					
		Question 1 Notes	[5]				
(a) General	Note	Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$ or $\frac{1 - 3x^2 - 2y}{2x - 3y^2}$ from no working is full marks.					
	Note	$dy = 3r^2 + 2y - 1$ $1 - 3r^2 - 2y$					
	Note	Note Few candidates will write $3x^2 + 2y + 2x dy - 1 - 3y^2 dy = 0$ leading to $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$, o.e.					
		This should get full marks.					
1. (a)	M1	M1 Differentiates implicitly to include either $2x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm k y^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).					
		A1 $x^3 \to 3x^2$ and $-x - y^3 - 20 = 0 \to -1 - 3y^2 \frac{dy}{dx} = 0$					
	B1	$2xy \rightarrow 2y + 2x \frac{dy}{dx}$					
	Note	If an extra term appears then award 1 st A0.					

	1 1						
1. (a) ctd	Note	$3x^{2} + 2y + 2x\frac{dy}{dx} - 1 - 3y^{2}\frac{dy}{dx} \rightarrow 3x^{2} + 2y - 1 = 3y^{2}\frac{dy}{dx} - 2x\frac{dy}{dx}$					
		will get 1^{st} A1 (implied) as the "= 0" can be implied by rearrangement of their equation.					
	dM1	dependent on the first method mark being awarded.					
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two terms</i> in $\frac{dy}{dx}$.					
		ie + $(2x - 3y^2)\frac{dy}{dx} =$					
	Note	acing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1.					
	A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$					
		cso: If the candidate's solution is not completely correct, then do not give this mark.isw: You can, however, ignore subsequent working following on from correct solution.					
1. (b)	M1	Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y					
		to find m_T and					
		• either applies $y - 2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value.					
		• or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value.					
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ is M0).					
	A1	Except any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$,					
		here their tangent equation is equal to 0.					
	cso	a correct solution is required from a correct $\frac{dy}{dx}$.					
	isw	ou can ignore subsequent working following a correct solution.					
	Altern	ative method for part (a): Differentiating with respect to y					
1. (a)		Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \rightarrow \pm kx^2\frac{dx}{dy}$ or $-x \rightarrow -\frac{dx}{dy}$					
		(Ignore $\left(\frac{\mathrm{d}x}{\mathrm{d}y}=\right)$).					
	A1	$x^3 \rightarrow 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \rightarrow -\frac{dx}{dy} - 3y^2 = 0$					
	B1	$2xy \to 2y\frac{\mathrm{d}x}{\mathrm{d}y} + 2x$					
	dM1	dependent on the first method mark being awarded.					
		An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are <i>at least two terms</i> in $\frac{dx}{dy}$.					
	A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$					
		cso: If the candidate's solution is not completely correct, then do not give this mark.					

Question Number		Scheme	Marks				
2.	{(1+	$kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^{2} + \dots \bigg\}$					
(a)	Either	c $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes	M1				
		leading to $k = \frac{3}{2}$ $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$	A1				
(b)		$\frac{(-4)(-5)}{2}(k)^{2}$ Either $\frac{(-4)(-5)}{2!}$ or $(k)^{2}$ or $(kx)^{2}$ Either $\frac{(-4)(-5)}{2!}(k)^{2}$ or $\frac{(-4)(-5)}{2!}(kx)^{2}$					
	$\begin{cases} A = \\ \end{cases}$	$\frac{(-4)(-5)}{2!} \left(\frac{3}{2}\right)^2 \Rightarrow A = \frac{45}{2} \qquad \qquad$	A1 [3]				
		Question 2 Notes	5				
Note	In this	Question 2 Notes s question ignore part labelling and mark part (a) and part (b) together.					
	Note	Writing down $\{(1 + kx)^{-4}\} = 1 + (-4)(kx) + \frac{(-4)(-4 - 1)}{2!}(kx)^2 + \dots$					
		gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1					
	141						
(a)	M1	Award M1 for • either writing down $(-4)k = -6$ or $4k = 6$					
		• entrier writing down $(-4)k = -6$ or $4k = 6$ • or expanding $(1 + kx)^{-4}$ to give $1 + (-4)(kx)$					
		• or writing down $(-4)k x = -6$ or $(-4k) = -6x$ or $-4k x = -6x$					
	A1	A1 $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$ from no incorrect sign errors.					
	Note	ote The M1 mark can be implied by a candidate writing down the correct value of k .					
	Note Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent). Note Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4)(kx) + (-4)(kx)$).						
	Note	Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4x)^{-4}$	(Kx) +)				
	Note	$1 + (-4)(kx)$ leading to $(-4)k = 6$ leading to $k = \frac{3}{2}$ is M1A0.					
(b)	M1	For either $\frac{(-4)(-4-1)}{2!}$ or $\frac{(-4)(-5)}{2!}$ or 10 or $(k)^2$ or $(kx)^2$					
	M1	Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(ther k)^2$	or $10k^2$				
	Note	Candidates are allowed to use 2 instead of 2!					
	A1	Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5					
	Note	$A = \frac{90}{4}$ which has not been simplified is A0.					
	Note	Award A0 for $A = \frac{45}{2}x^2$.					
		Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$					
	Note	$k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0.					

Question Number				Scher	ne		Marks
	X	: 1	2	3	4	10	
3.		1.42857	0.90326	0.682116	0.55556	$y = \frac{10}{2x + 5\sqrt{x}}$	
(a)	${\operatorname{At} x}$	=3, y=0.6				0.68212	B1 cao [1]
(b)	$\frac{1}{2} \times 1$	×[1.42857 +	0.55556 + 2(0	.90326 + their 0	.68212)]	Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ For structure of []	B1 aef M1
	$\left\{=\frac{1}{2}\right)$	$5.15489) \Big\} = 1$	2.577445 = 2.	5774 (4 dp)		anything that rounds to 2.5774	A1 [3]
(c)	•	a diagram v concave or	us <u>pezia lie abov</u> which gives re convex an be implied rds	ference to the ex	tra area		B1 [1]
(d)		ca.v	$\frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u}$				B1
	$\int \frac{1}{2}$	$\frac{10}{2u^2+5u}.\ 2u \ du$	lu	Either $\left\{ \int \right\} = \frac{1}{\alpha}$	$\frac{\pm k u}{u^2 \pm \beta u} \left\{ \mathrm{d}u \right\}$	or $\left\{\int\right\} \frac{\pm k}{u(\alpha u^2 \pm \beta u)} \left\{du\right\}$	M1
	{=	$\left\{\frac{20}{2u+5} du\right\}$	$\cdot = \frac{20}{2} \ln(2u +$	-5)		$2u + 5$) or $\pm \lambda \ln\left(u + \frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.	M1
	J	2 <i>u</i> + 5	Z		$\frac{20}{2u+5} \rightarrow$	$\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$	A1 cso
			,	$+5) - 10\ln(2(1))$	(+5)	Substitutes limits of 2 and 1 in <i>u</i> (or 4 and 1 in <i>x</i>) and subtracts the correct way round.	M1
	101n9	$9 - 10 \ln 7$ or	$10\ln\left(\frac{9}{7}\right)$ or	$20\ln 3 - 10\ln 7$	7		A1 oe cso
							[6] 11
3. (a)	B 1	0.68212 co	rrect answer o	· · ·	estion 3 Notes	or in the candidate's working.	
(b)	B1 B1			$\frac{1}{2}$ or equivalent		or in the candidate 5 working.	
	M1 Note A1	For structure No errors ar	e of trapezium	<u>rule</u> []	r an extra y-ordinate or a repeated	y ordinate].
	Note	Working mu	ist be seen to a	demonstrate the	use of the trape	ezium rule. (Actual area is 2.513	14428)

	r						
3. (b) contd	Note	Award B1M1A1 for $\frac{1}{2}(1.42857 + 0.55556) + (0.90326 + \text{their } 0.68212) = 2.577445$					
		Bracketing mistake: Unless the final answer implies that the calculation has been done correctly					
		award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).					
		award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).					
		Alternative method: Adding individual trapezia					
		Area $\approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$					
	B1	B1: 1 and a divisor of 2 on all terms inside brackets.					
	M1 A1	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 2.5774					
(c)	B1	Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area					
		eg. This diagram is sufficient. It must					
		eg. This diagram is sufficient. It must show the top of a trapezium lying					
		above the curve.					
		or concave or convex or $\frac{d^2 y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.					
	Note	Reason of "gradient is negative" by itself is B0.					
(d)	B 1	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \mathrm{d}u = \frac{1}{2\sqrt{x}} \mathrm{d}x \text{or} \ 2\sqrt{x} \mathrm{d}u = \mathrm{d}x \text{or} \mathrm{d}x = 2u \mathrm{d}u \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{o.e.}$					
	M1	Applying the substitution and achieving $\left\{\int\right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{du\right\}$ or $\left\{\int\right\} \frac{\pm k}{u(\alpha u^2 \pm \beta u)} \left\{du\right\}$,					
		k, α , $\beta \neq 0$. Integral sign and du not required for this mark.					
	M1	Cancelling <i>u</i> and integrates to achieve $\pm \lambda \ln(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.					
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplified.					
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.					
		So $\int \frac{10}{2u+5} du = 10 \ln(2u+5)$ WOULD BE A0 and final A0.					
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.					
	A1	Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln\left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln\left(\frac{3}{\sqrt{7}}\right)$ or $\ln\left(\frac{9^{10}}{7^{10}}\right)$					
		or equivalent. Correct solution only.					
	Note Note	You can ignore subsequent working which follows from a correct answer. A decimal answer of 2.513144283 (without a correct exact answer) is A0.					
	Note						

Question Number		Scheme	Marks			
4.	$\frac{\mathrm{d}V}{\mathrm{d}t} =$	80π , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$,				
	ui		M1			
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 8\pi h + 16\pi \qquad \qquad$	A1			
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\right.$	$\times \frac{dh}{dt} = \frac{dV}{dt} \Longrightarrow \left\{ 8\pi h + 16\pi \right\} \frac{dh}{dt} = 80\pi \qquad \left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80\pi$	M1 oe			
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\} =$	$= \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Longrightarrow \left\{ \begin{array}{c} \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi} \end{array} \right. \qquad \text{or} 80\pi \div \text{Candidate's} \frac{\mathrm{d}V}{\mathrm{d}h}$				
	When	$h = 6, \left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{1}{8\pi(6) + 16\pi} \times 80\pi \left\{=\frac{80\pi}{64\pi}\right\}$ dependent on the previous M1 see notes	dM1			
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 1$	1.25 (cm s ⁻¹) $1.25 \text{ or } \frac{5}{4} \text{ or } \frac{10}{8} \text{ or } \frac{80}{64}$				
			[5] 5			
		native Method for the first M1A1				
	D 1	ct rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$				
	Produc	ct rule: $\begin{cases} \frac{du}{dt} = 4\pi & \frac{dv}{dt} = 1 \end{cases}$				
			M1			
	$\frac{dV}{dh} = 4\pi(h+4) + 4\pi h \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 4\pi(h+4) + 4\pi h$					
	un		A1			
	Question 4 Notes					
		M1 An expression of the form $\pm \alpha h \pm \beta$, $\alpha \neq 0$, $\beta \neq 0$. Can be simplified or un-simplified.				
	A1	Correct simplified or un-simplified differentiation of V. eg. $8\pi h + 16\pi$ or $4\pi(h+4) + 4\pi h$ or $8\pi(h+2)$ or equivalent.				
	Note	Some candidates will use the product rule to differentiate V with respect to h. (See Alt N	fethod 1).			
	Note	dV				
	Note	dh	ig then v.			
	M1	$\left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \text{or} 80\pi \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$				
	Note	Also allow 2 nd M1 for $\left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80$ or $80 \div \text{Candidate's } \frac{dV}{dh}$				
	Note	Give 2 nd M0 for $\left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80 \pi t \text{ or } 80 \kappa \text{ or } 80 \pi t \text{ or } 80 \kappa \div \text{Candidate's } \frac{dV}{dh}$				
	dM1	which is dependent on the previous M1 mark.				
		Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and 80π ((or 80)			
	A1	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).				
	Note	$\frac{80\pi}{64\pi}$ as a final answer is A0.				
	Note	Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives 64π but the final M1 mark can only be award	ded if this			
		is used as a quotient with 80π (or 80)				

Question Number	Scheme	Marks
5.	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
(a)	$\frac{\text{Main Scheme}}{x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right)} \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$	
	$=2\sqrt{3}\cos t$ * Correct proof	A1 * [3]
(a)	$\frac{\text{Alternative Method 1}}{x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right)} \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$	
	So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in <i>x</i> , <i>y</i> and <i>t</i> .	dM1
	$x + y = 2\sqrt{3}\cos t$ * Correct proof	A1 *
	Main Scheme	[3]
(b)	$\frac{ \text{Main Scheme} }{\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2} = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	M1
	$\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$	
	$\Rightarrow (x + y)^{2} + 3y^{2} = 12 \qquad (x + y)^{2} + 3y^{2} = 12 \{a = 3, b = 12\}$	A1 [2]
(b)	<u>Alternative Method 1</u> $(x + y)^2 = 12\cos^2 t = 12(1 - \sin^2 t) = 12 - 12\sin^2 t$	
	$(x + y)^{2} = 12 \cos t = 12(1 - \sin t) = 12 - 12 \sin t$ So, $(x + y)^{2} = 12 - 3y^{2}$ Applies $\cos^{2} t + \sin^{2} t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	M1
	$\Rightarrow (x + y)^{2} + 3y^{2} = 12 \qquad (x + y)^{2} + 3y^{2} = 12$	A1 [2]
(b)	Alternative Method 2	
	$(x + y)^2 = 12\cos^2 t$	
	As $12\cos^2 t + 12\sin^2 t = 12$ then $(x + y)^2 + 3y^2 = 12$	M1, A1
		[2]
		5

		Question 5 Notes					
5. (a)	M1	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$					
	Note	If a candidate states $\cos(A + B) = \cos A \cos B \pm \sin A \sin B$, but there is an error <i>in its application</i>					
		then give M1.					
		Awarding the dM1 mark which is dependent on the first method mark					
Main	dM1	Adds their expanded x (which is in terms of t) to $2\sin t$					
	Note	Writing $x + y =$ is not needed in the Main Scheme method.					
Alt 1	dM1	Forms an equation in <i>x</i> , <i>y</i> and <i>t</i> .					
	A1*	Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.					
	Note	${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0.					
(b)	M1	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.					
	A1	leading $(x + y)^2 + 3y^2 = 12$					
	SC	Award Special Case B1B0 for a candidate who writes down either • $(x + y)^2 + 3y^2 = 12$ from no working • $a = 3, b = 12$, but <u>does not provide a correct proof</u> .					
	Note	Alternative method 2 is fine for M1 A1					
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0					
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$ • states $a = 3, b = 12$ • and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$ • and there is no incorrect working would get M1A1					

Question Number	Scheme		Mar	ks
	$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \},$	$\alpha \neq 0, \beta > 0$	M1	
6. (i)	$re^{4x} dx = \frac{1}{2} re^{4x} - \frac{1}{2} e^{4x} \{dx\}$	$\int \frac{1}{4} e^{4x} \left\{ dx \right\}$	A1	
	$=\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \{+c\} $ $\frac{1}{4}$	$-xe^{4x} - \frac{1}{16}e^{4x}$	A1	[2]
		$\pm\lambda(2x-1)^{-2}$	M1	[3]
(ii)		or equivalent.	A1	
	$\left\{=-2(2x-1)^{-2}\left\{+c\right\}\right\}$ {Ignore subsequ	ent working}.		[2]
(iii)	$\frac{dy}{dx} = e^x \operatorname{cosec} 2y \operatorname{cosec} y \qquad y = \frac{\pi}{6} \text{ at } x = 0$			
	Main Scheme			
	$\int \frac{1}{\operatorname{cosec} 2y \operatorname{cosec} y} \mathrm{d}y = \int e^x \mathrm{d}x \text{or} \int \sin 2y \sin y \mathrm{d}y = \int e^x \mathrm{d}x$		B1 oe	
	$\int 2\sin y \cos y \sin y dy = \int e^x dx \qquad \qquad \text{Applying } \frac{1}{\csc 2y} \text{ or } \sin 2y - \frac{1}{\csc 2y} = \frac{1}{\cos 2y} + \frac{1}{$	$\rightarrow 2 \sin y \cos y$	M1	
	Integrates to g	ive $\pm \mu \sin^3 y$	M1	
	$\frac{2}{3}\sin^3 y = e^x \{+c\}$ 2 sin ² y cos	$y \rightarrow \frac{2}{3}\sin^3 y$	A1	
		$e^x \rightarrow e^x$	B1	
	$\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c \text{ or } \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ Use of $y =$ in an integrated equation	$\frac{\pi}{6}$ and $x = 0$	M1	
		$y^{3} = e^{x} - \frac{11}{12}$	A1	
	Alternative Method 1			[7]
	$\int \frac{1}{\cos 2y \csc y} dy = \int e^x dx \text{or} \int \sin 2y \sin y dy = \int e^x dx$		B1 oe	
	$\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx \qquad $	$s3y \pm \lambda \cos y$	M1	
	Integrates to give $\pm \alpha \sin \alpha$	$3y \pm \beta \sin y$	M1	
	$-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \{+c\} \qquad -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \{+c\}$	$n 3y - \sin y$	A1	
	$e^x \rightarrow e^x$ as part of solv	ing their DE.	B1	
	$-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{ or } -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } integrated equation}$		M1	
	$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{ giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = \frac{1}{6}\sin 3y + $		A1	
				[7] 12

		Question	1 6 Notes				
6. (i)	M1	Integration by parts is applied in the form \pm	$\alpha x e^{4x} - \int \beta e^{4x} \{ dx \}$, where $\alpha \neq 0, \beta > 0$.				
		(must be in this form).					
	A1	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} \text{ or equivalent.}$					
	A1	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be un-simplified.					
	isw	You can ignore subsequent working following					
	SC	SPECIAL CASE: A candidate who uses $u = x$, $\frac{dv}{dx} = e^{4x}$, writes down the correct "by parts" formula,					
		but makes only one error when applying it ca	an be awarded Special Case M1.				
(ii)	M1	$\pm \lambda (2x-1)^{-2}, \lambda \neq 0$. Note that λ can be 1.					
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or } -2(2x-1)^{-2} \text{ or } \frac{-2}{(2x-1)^2}$	with/without $+ c$. Can be un-simplified.				
	Note	You can ignore subsequent working which f	ollows from a correct answer.				
(iii)	B1	Separates variables as shown. dy and dx should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.					
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$ or $\int \sin 2y \sin y = \int e^x$				
	M1	$\frac{1}{\csc 2y} \to 2\sin y \cos y \text{or} \sin 2y \to 2\sin y \cos y \text{or} \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$					
	M1	seen anywhere in the candidate's working to (iii). Integrates to give $\pm \mu \sin^3 y$, $\mu \neq 0$ or $\pm \alpha \sin 3y \pm \beta \sin y$, $\alpha \neq 0$, $\beta \neq 0$					
	A1	$2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ (with no extra terms) or integrates to give $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$					
	B1	Evidence that e^x has been integrated to give					
	M1	Some evidence of using both $y = \frac{\pi}{6}$ and $x =$	0 in an integrated or changed equation cont	aining <i>c</i> .			
	Note	that is mark can be implied by the correct value 2 11 1 1					
	A1	$\frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \text{or} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y$	$=e^{x}-\frac{11}{12}$ or any equivalent correct answ	er.			
	Note Alternativ	You can ignore subsequent working which f e Method 2 (Using integration by parts twice					
		$n y dy = \int e^x dx$		B1 oe			
	Applies integration by parts twice to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$ M2						
	$\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y = e^{x} \{+c\}$ $\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$ (simplified or un-simplified) A1						
			$e^x \rightarrow e^x$ as part of solving their DE.	B1			
	1	2 11	as in the main scheme	M1			
	$\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y = e^x - \frac{11}{12} \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} A1$						
	[7]						

Question Number	Scheme	Marks
7.	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$	
	$\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta} \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\} \qquad \text{their } \frac{dy}{d\theta} \text{ divided by their } \frac{dx}{d\theta}$	M1
	Correct — dx	
	At $P(3, 2)$, $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) \left\{=-\frac{2}{3}\right\}$ Some evidence of substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$	
	So, $m(\mathbf{N}) = \frac{3}{2}$ applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	Either N: $y - 2 = \frac{3}{2}(x - 3)$	
	or $2 = \left(\frac{3}{2} \right)(3) + c$ see note	s M1
	{At Q , $y = 0$, so, $-2 = \frac{3}{2}(x - 3)$ } giving $x = \frac{5}{3}$ $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.6	7 A1 cso
	$\begin{bmatrix} 1 & 2 & 1 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 \end{bmatrix}$ (10)	[6]
(b)	$\left\{ \int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{ \int \right\} (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ see note	
	So, $\pi \int y^2 dx = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ see note	
	$\int y^2 dx = \int 48\cos^2\theta d\theta \qquad $	A1
	$= \{48\} \int \left(\frac{1+\cos 2\theta}{2}\right) d\theta \left\{= \int (24+24\cos 2\theta) d\theta\right\} \qquad \text{Applies } \cos 2\theta = 2\cos^2 \theta - 1$	M1
	Dependent on the first metho mark. For $\pm \alpha \theta \pm \beta \sin 2\theta$	
	$= \{48\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right) \{= 24\theta + 12\sin 2\theta\} \qquad \qquad$	A1
	$\int_{0}^{\frac{\pi}{4}} y^{2} dx \left\{ = 48 \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right\} = \left\{ 48 \right\} \left(\left(\frac{\pi}{8} + \frac{1}{4} \right) - (0+0) \right) \left\{ = 6\pi + 12 \right\} $ Dependent of the third method mark	dM1
	{So $V = \pi \int_{0}^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }	
	$V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \text{their } (a)\right)$	M1
	$\left\{ \text{Vol}(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Rightarrow \text{Vol}(S) = \frac{92}{9}\pi + 6\pi^2 \qquad \qquad \frac{92}{9}\pi + 6\pi$	A1
	$\left\{p = \frac{92}{9}, q = 6\right\}$	[9]
		15

		Question 7 Notes
7. (a)	1 st M1	Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$
	SC	Award Special Case 1 st M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.
	1 st A1	Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.
	2 nd M1	Some evidence of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$
	Note	For 3 rd M1 and 4 th M1, $m(\mathbf{T})$ must be found by using $\frac{dy}{dx}$.
	3 rd M1	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here.
	4 th M1	• Applies $y - 2 = (\text{their } m_N)(x - 3)$, where m(N) is a numerical value,
		• or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$, where $m(\mathbf{N})$ is a numerical value,
		and $m_N = -\frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = \frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = -\text{their } m(\mathbf{T})$.
	Note	This mark can be implied by subsequent working.
	2 nd A1	$x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.
(b)	1 st M1	Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.
	Note	You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1.
	Note	Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ or $\int 4(\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ
	1 st A1	Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ (Allow the omission of $d\theta$)
	Note	IMPORTANT: The π can be recovered later, but as a correct statement only.
	2 nd A1	$\left\{ \int y^2 dx \right\} = \int 48\cos^2\theta \{ d\theta \}.$ (Ignore $d\theta$). Note: 48 can be written as 24(2) for example.
	2^{nd} M1	Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied .)
	3 rd dM1*	which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified.
	3 rd A1	which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark.
		Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.
		This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified.
	$4^{th} dM1$	which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark.
		Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ
	5 th M1	Applies $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer}).$
	Note	Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits.
	4 th A1	$\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$
	Note Note	A decimal answer of 91.33168464 (without a correct exact answer) is A0. The π in the volume formula is only needed for the 1 st A1 mark and the final accuracy mark.
	L	

7.		Working with a Cartesian Equation		
		A cartesian equation for C is $y = \frac{36}{x^2 + 9}$		
(a)	1 st M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2} \text{or} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$		
	1 st A1	$\frac{dy}{dx} = -36(x^2+9)^{-2}(2x)$ or $\frac{dy}{dx} = \frac{-72x}{(x^2+9)^2}$ un-simplified or simplified.		
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method		
		For substituting $x = 3$ into their $\frac{dy}{dx}$		
		i.e. at $P(3, 2)$, $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$		
		From this point onwards the original scheme can be applied.		
(b)	1 st M1	For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ (π not required for this mark)		
	A1	For $\pi \int \left(\frac{36}{x^2+9}\right)^2 \{dx\}$ (π required for this mark)		
		To integrate, a substitution of $x = 3 \tan \theta$ is required which will lead to $\int 48 \cos^2 \theta d\theta$ and so		
		from this point onwards the original scheme can be applied.		
		Another cartesian equation for <i>C</i> is $x^2 = \frac{36}{y} - 9$		
(a)	1 st M1	$\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$		
	1 st A1	$2x = -\frac{36}{y^2}\frac{dy}{dx}$ or $2x\frac{dx}{dy} = -\frac{36}{y^2}$		
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method		
		For substituting $x = 3$ to find $\frac{dy}{dx}$		
		i.e. at $P(3, 2), 2(3) = -\frac{36}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$		
		From this point onwards the original scheme can be applied.		

Question Number	Scheme	Mark	ĸs
8.	$\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$		
(a)	$\overrightarrow{AB} = \pm \left((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \right); = \mathbf{i} - \mathbf{j} + \mathbf{k}$	M1; A1	
			[2]
(b)	$\begin{pmatrix} -2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$		
(b)	$\left\{l_{1}:\mathbf{r}\right\} = \begin{pmatrix}-2\\4\\7\end{pmatrix} + \lambda \begin{pmatrix}1\\-1\\1\end{pmatrix} \text{or} \left\{\mathbf{r}\right\} = \begin{pmatrix}-1\\3\\8\end{pmatrix} + \lambda \begin{pmatrix}1\\-1\\1\end{pmatrix}$	B1ft	
			[1]
	$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$		
(c)	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$	M1	
	$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ Applies dot produ formula betwe		
	$\{\cos \theta =\} \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB}\right \cdot \left \overrightarrow{PB}\right } = \frac{\begin{pmatrix} 1\\ -1\\ 1\\ 1 \end{pmatrix}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad Applies dot production formula betwee their (\overrightarrow{AB} or \overrightarrow{BA}) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BB}\right) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BB}\right) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BB}\right) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BB}\right) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BB}\right) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2} \qquad \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BB}\right) = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\sqrt{(1)^2 + (-1)^2 + (1)^2 + (-1)^2 + (5)^2}} $	• \	
	$\{\cos \theta = \} \frac{AB + B}{ \overline{AB} \cdot \overline{PB} } = \frac{(1)^2 (1)^2}{\sqrt{(1)^2 + (-1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2}} $ and their $(\overline{PB} \text{ or } \overline{BF})$).	
	(-2) -1 -1 + 5 - 3 - 1	,	
	$\{\cos\theta\} = \frac{-1-1+5}{\sqrt{3}.\sqrt{27}} = \frac{3}{9} = \frac{1}{3}$ Correct pro-	of A1 cso	
		(1)	[3]
	$\mathbf{p} + \lambda \mathbf{d} \text{ or } \mathbf{p} + \mu \mathbf{d}, \ \mathbf{p} \neq 0, \ \mathbf{d} \neq 0 \text{ with } \mathbf{p} = 0 \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{d} = \text{their } \overrightarrow{AB}, \text{ or } \mathbf{d} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{k} o$		
(d)	$\{l_2: \mathbf{r} = \} \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = \text{their } \overline{AB}$, or multiple of their \overline{A} .	→	
	(3) (1) Correct vector equation		
			[2]
	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Either \overrightarrow{OP} + their \overrightarrow{A}	N/I I	
(e)	$\overrightarrow{OC} = \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \text{or} \overrightarrow{OD} = \begin{pmatrix} 0\\2\\3 \end{pmatrix} - \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\1$	B	
(0)	(3) (1) (4) (3) (1) At least one set of coordinates a corre	ALII	
	$\{C(1,1,4), D(-1,3,2)\}$ Both sets of coordinates are corre		
(6)			[3]
(1) Way 1	$\frac{h}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} = \sin \theta \qquad \qquad \frac{h}{\text{their } \overline{PB} } = \sin \theta$	θ M1	
		_	
	$h = \sqrt{27}\sin(70.5) \left\{ = \sqrt{27}\frac{\sqrt{8}}{3} = 2\sqrt{6} = \text{awrt } 4.9 \right\}$	$\frac{1}{3}$ A1 oe	
	or $2\sqrt{6}$ or awrt 4.9 or equivale	nt	
	Area $ABCD = \frac{1}{2} 2\sqrt{6} \left(\sqrt{3} + 2\sqrt{3}\right)$ $\frac{1}{2} (\text{their } h) (\text{their } AB + \text{their } CL)$) dM1	
	$\left\{ = \frac{1}{2} 2\sqrt{6} \left(3\sqrt{3} \right) = 3 \sqrt{18} \right\} = \frac{9\sqrt{2}}{9\sqrt{2}}$		
	$\left\{-\frac{1}{2} 2^{\sqrt{6}} \left(5^{\sqrt{5}}\right) - 5^{\sqrt{16}}\right\} - \frac{5^{\sqrt{2}}}{2}$	2 A1 cao	
			[4] 15

8. (f)	Helpful Diagram!	
	$B\begin{bmatrix} -1\\ 3\end{bmatrix}$ l_1	
	Area $\triangle APB = 4.2426$ $\begin{pmatrix} -2 \end{pmatrix}$ $\sqrt{3}$	
	Area $\triangle APB = 4.2426$ $A = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$ $A = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$	
	$\begin{pmatrix} 7 \end{pmatrix}$	
	$h = 2\sqrt{6} = 3\sqrt{3} \cdot \left(\frac{\sqrt{8}}{3}\right)$	-)= 4.8989
	$\overrightarrow{DA} = \overrightarrow{PB} = \begin{pmatrix} -1\\ 1\\ 5 \end{pmatrix}$	
	$\begin{bmatrix} DA = IB = \begin{bmatrix} 1\\5 \end{bmatrix}$	
	(-2) (0)	
	$\overrightarrow{PA} = \overrightarrow{CB} = \begin{pmatrix} -2\\ 2\\ 4 \end{pmatrix} \qquad \qquad$	
	$\begin{pmatrix} 4 \end{pmatrix}$ $D \begin{pmatrix} -1 \\ 3 \end{pmatrix}$	
	$\begin{pmatrix} -2 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$	
	$\overrightarrow{PA} = \overrightarrow{CB} = \begin{pmatrix} -2\\2\\4 \end{pmatrix}$ and $\overrightarrow{AB} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, so $BC \perp AB$ Candidates do not need to prove this result for part (f)	
8. (f)	$h = \overrightarrow{CB} = \sqrt{(-2)^2 + (2)^2 + (4)^2} = \sqrt{24} = 2\sqrt{6} = 4.8989$ Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $	M1
Way 2	$ PA = CB = \sqrt{24}$	A1 oe
	Area $ABCD = \frac{1}{2}\sqrt{24}(\sqrt{3} + 2\sqrt{3})$ or $\frac{1}{2}\sqrt{24}\sqrt{3} + \sqrt{24}\sqrt{3}$ $\frac{1}{2}h(\text{their } AB + \text{their } CD)$	dM1 oe
	$=\underline{9\sqrt{2}}$	A1 cso [4]
Way3	Finds the area of either triangle APB or APD or BCP and triples the result.	[•]
8. (f)	Area $\triangle APB = \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin\theta$ Attempts $\frac{1}{2}$ (their <i>AB</i>)(their <i>PB</i>)sin θ	M1
	$= \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5) \qquad \qquad \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5) \text{ or } 3\sqrt{2}$	A1
	or awrt 4.24 or equivalent	JM1
	Area $ABCD = 3(3\sqrt{2})$ = $9\sqrt{2}$ $3 \times \text{Area of } \Delta APB$ $9\sqrt{2}$	dM1 A1 cso
		[4]

		Question 8 Notes	
8. (a)	M1	Finding the difference (either way) between \overrightarrow{OB} and \overrightarrow{OA} .	
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	rence.
	A 1	$\mathbf{i} = \mathbf{i} + \mathbf{k}$ or $(1, -1, 1)$ or benefit of the doubt -1	
	A1	$\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $(1, -1, 1)$ or benefit of the doubt -1	
(b)	B1ft	$\{\mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed thr}$	rough from (a).
	Note	$\mathbf{r} = \mathbf{is}$ not needed.	
(c)	M1	An attempt to find either the vector \overrightarrow{PB} or \overrightarrow{BP} .	
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ	rence.
	M1	Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.	
	A1	Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.	
	Note	If candidate starts by applying $\frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB}\right \cdot \left \overrightarrow{PB}\right }$ correctly (without reference to $\cos \theta =$)	
		they can gain both 2 nd M1 and A1 mark.	
	Note	Award the final A1 mark if candidate achieves $\{\cos \theta\} = \frac{1}{3}$ by either taking the dot produc	ct between
	Note	(i) $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ and $\begin{pmatrix} -1\\1\\5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$ and $\begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$. Ignore if any of these vectors are labelle Award final A0, cso for those candidates who take the dot product between (iii) $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$ or (iv) $\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$ and $\begin{pmatrix} -1\\1\\5 \end{pmatrix}$	
		They will usually find $\{\cos\theta\} = -\frac{1}{3}$ or may fudge $\{\cos\theta\} = \frac{1}{3}$.	
		If these candidates give a convincing detailed explanation which must include reference to 3	the direction
		of their vectors then this can be given A1 cso	
(c)	Altor	ative Method 1: The Cosine Rule	
(C)		$\overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ Mark in the same way as the main scheme.	M1
	Note \overline{I}	$\overrightarrow{PB} = \sqrt{27}$, $\left \overrightarrow{AB} \right = \sqrt{3}$ and $\left \overrightarrow{PA} \right = \sqrt{24}$	
	$\left(\sqrt{24}\right)$	$^{2} = (\sqrt{27})^{2} + (\sqrt{3})^{2} - 2(\sqrt{27})(\sqrt{3})\cos\theta$ Applies the cosine rule the correct way round	M1 oe
	$\cos\theta$	$s\theta = \frac{27+3-24}{18} = \frac{1}{3}$ Correct proof A1 cso	
		18 3	[3]
	I		[0]

8. (c)	Alterna	tive Method 2: Right-Angled Trigonometry	٦
	$\overrightarrow{PB} = \overrightarrow{O}$	$\overrightarrow{DB} - \overrightarrow{OP} = \begin{pmatrix} -1\\ 3\\ 8 \end{pmatrix} - \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix} = \begin{pmatrix} -1\\ 1\\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\ -1\\ -5 \end{pmatrix} $ Mark in the same way as the main scheme. M1	
	,	$\sqrt{24}\right)^{2} + \left(\sqrt{3}\right)^{2} = \left(\sqrt{27}\right)^{2}$ $\overrightarrow{PA} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$ Confirms ΔPAB is right-angled M1	
	So, $\begin{cases} cc \\ cc \end{cases}$	$\cos\theta = \frac{AB}{PB} \Rightarrow \left\{ \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3} \right\}$ Correct proof A1 cso [3]	1
(d)	M1	Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} =$ their \overrightarrow{AB} $\mathbf{d} =$ their \overrightarrow{AB} ,	_
		or a multiple of their \overrightarrow{AB} found in part (a).	
	A1ft	Writing $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \mathbf{d}$, where \mathbf{d} = their \overline{AB} or a multiple of their \overline{AB} found in part (a).	
	Note Note	\mathbf{r} = is not needed. Using the same scalar parameter as in part (b) is fine for A1.	
(e)	M1 Note A1ft A1ft	Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . This can be implied at least two out of three correct components for either their <i>C</i> or their <i>D</i> . At least one set of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> Both sets of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i>	
	Note	You can follow through either or both accuracy marks in this part using their AB from part (a).	_
(f)	M1	Way 1: $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$	
		Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $	
		Way 3: Attempts $\frac{1}{2}$ (their <i>PB</i>)(their <i>AB</i>)sin θ	
	Note	Finding AD by itself is M0.	
	A1	Either	
		• $h = \sqrt{27} \sin(70.5)$ or $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$ or equivalent. (See Way 1 and Way 2)	
		• the area of either triangle <i>APB</i> or <i>APD</i> or <i>BDP</i> = $\frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5)$ o.e. (See Way 3).	
	dM1	which is dependent on the 1 st M1 mark. A full method to find the area of trapezium <i>ABCD</i> . (See Way 1, Way 2 and Way 3).	
	A1	$9\sqrt{2}$ from a correct solution only.	
	Note	A decimal answer of 12.7279 (without a correct exact answer) is A0.	