Paper Reference(s)

6666/01 Edexcel GCE

Core Mathematics C4

Advanced Subsidiary

Tuesday 18 June 2013 – Morning

Time: 1 hour 30 minutes

Materials required for examination

Items included with question papers

Mathematical Formulae (Pink)

Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for the parts of questions are shown in round brackets, e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 32 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner.

Answers without working may not gain full credit.

1. (a) Find $\int x^2 e^x dx$.

(5)

(b) Hence find the exact value of $\int_0^1 x^2 e^x dx$.

(2)

2. (a) Use the binomial expansion to show that

$$\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1 + x + \frac{1}{2}x^2, \qquad |x| < 1$$

(6)

(b) Substitute $x = \frac{1}{26}$ into

$$\sqrt{\left(\frac{1+x}{1-x}\right)} = 1 + x + \frac{1}{2}x^2$$

to obtain an approximation to $\sqrt{3}$.

Give your answer in the form $\frac{a}{b}$ where a and b are integers.

(3)

P43137A 2

3.

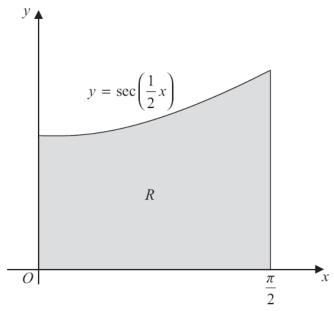


Figure 1

Figure 1 shows the finite region *R* bounded by the *x*-axis, the *y*-axis, the line $x = \frac{\pi}{2}$ and the curve with equation

$$y = \sec\left(\frac{1}{2}x\right), \qquad 0 \le x \le \frac{\pi}{2}$$

The table shows corresponding values of x and y for $y = \sec\left(\frac{1}{2}x\right)$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
у	1	1.035276		1.414214

(a) Complete the table above giving the missing value of y to 6 decimal places.

(1)

(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

(3)

Region *R* is rotated through 2π radians about the *x*-axis.

(c) Use calculus to find the exact volume of the solid formed.

(4)

P43137A 3

4. A curve *C* has parametric equations

$$x = 2\sin t$$
, $y = 1 - \cos 2t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$

(a) Find $\frac{dy}{dx}$ at the point where $t = \frac{\pi}{6}$.

(4)

(b) Find a cartesian equation for C in the form

$$y = f(x),$$
 $-k \le x \le k,$

stating the value of the constant k.

(3)

(c) Write down the range of f(x).

(2)

5. (a) Use the substitution $x = u^2$, u > 0, to show that

$$\int \frac{1}{x(2\sqrt{x}-1)} dx = \int \frac{2}{u(2u-1)} du$$

(3)

(b) Hence show that

$$\int_{1}^{9} \frac{1}{x(2\sqrt{x} - 1)} \, \mathrm{d}x = 2\ln\left(\frac{a}{b}\right)$$

where a and b are integers to be determined.

(7)

6. Water is being heated in a kettle. At time t seconds, the temperature of the water is θ °C.

The rate of increase of the temperature of the water at any time t is modelled by the differential equation

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda(120 - \theta), \qquad \theta \le 100$$

where λ is a positive constant.

Given that $\theta = 20$ when t = 0,

(a) solve this differential equation to show that

$$\theta = 120 - 100e^{-\lambda t} \tag{8}$$

When the temperature of the water reaches 100°C, the kettle switches off.

(b) Given that $\lambda = 0.01$, find the time, to the nearest second, when the kettle switches off.

(3)

7. A curve is described by the equation

$$x^2 + 4xy + y^2 + 27 = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

A point Q lies on the curve.

The tangent to the curve at Q is parallel to the y-axis.

Given that the x-coordinate of Q is negative,

(b) use your answer to part (a) to find the coordinates of Q.

(7)

P43137A 5

8. With respect to a fixed origin O, the line l has equation

$$\mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \text{ where } \lambda \text{ is a scalar parameter.}$$

The point A lies on l and has coordinates (3, -2, 6).

The point P has position vector $(-p\mathbf{i} + 2p\mathbf{k})$ relative to O, where p is a constant.

Given that vector \overrightarrow{PA} is perpendicular to l,

(a) find the value of p.

(4)

Given also that B is a point on l such that $\langle BPA = 45^{\circ}$,

(b) find the coordinates of the two possible positions of B.

(5)

TOTAL FOR PAPER: 75 MARKS

END

P43137A 6

Question Number	Scheme	Marks	
1. (a)	$\int x^2 e^x dx, 1^{st} \text{ Application: } \begin{cases} u = x^2 \implies \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}, 2^{nd} \text{ Application: } \begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$		
	$x^2 e^x - \int \lambda x e^x \{dx\}, \ \lambda > 0$	M1	
	$= x^2 e^x - \int 2x e^x dx$ $x^2 e^x - \int 2x e^x \{dx\}$	A1 oe	
	Either $\pm Ax^2 e^x \pm Bx e^x \pm C \int e^x \{dx\}$ or for $\pm K \int xe^x \{dx\} \rightarrow \pm K \left(xe^x - \int e^x \{dx\}\right)$	M1	
	$= x^{2}e^{x} - 2(xe^{x} - e^{x}) \{+ c\}$ $\pm Ax^{2}e^{x} \pm Bxe^{x} \pm Ce^{x}$	M1	
	Correct answer, with/without $+ c$	A1	
(b)	$\left\{ \begin{bmatrix} x^2 e^x - 2(xe^x - e^x) \end{bmatrix}_0^1 \right\}$ Applies limits of 1 and 0 to an expression of the form $\pm Ax^2 e^x \pm Bxe^x \pm Ce^x$, $A \neq 0$, $B \neq 0$ and $C \neq 0$ and subtracts the correct way round.	[5] M1	
	e-2 cso	A1 oe [2]	
	Notes for Question 1	,	
(a)	M1: Integration by parts is applied in the form $x^2e^x - \int \lambda x e^x \{dx\}$, where $\lambda > 0$. (must be in this form $\lambda = 0$).	orm).	
	A1: $x^2 e^x - \int 2x e^x \{dx\}$ or equivalent.		
	M1: Either achieving a result in the form $\pm Ax^2e^x \pm Bxe^x \pm C\int e^x \{dx\}$ (can be implied)		
	(where $A \neq 0$, $B \neq 0$ and $C \neq 0$) or for $\pm K \int x e^x \{dx\} \rightarrow \pm K \left(x e^x - \int e^x \{dx\}\right)$		
	M1: $\pm Ax^2e^x \pm Bxe^x \pm Ce^x$ (where $A \neq 0$, $B \neq 0$ and $C \neq 0$)		
	A1: $x^2 e^x - 2(xe^x - e^x)$ or $x^2 e^x - 2xe^x + 2e^x$ or $(x^2 - 2x + 2)e^x$ or equivalent with/without $+ c$.		
(b)	M1: Complete method of applying limits of 1 and 0 to their part (a) answer in the form $\pm Ax^2e^x \pm B$	$Bxe^{x} \pm Ce^{x}$,	
	(where $A \neq 0$, $B \neq 0$ and $C \neq 0$) and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 (as detailed above) is needed for M1. So, just subtracting zero is M0.		
	A1: $e - 2$ or $e^1 - 2$ or $-2 + e$. Do not allow $e - 2e^0$ unless simplified to give $e - 2$.		

Note: that 0.718... without seeing e-2 or equivalent is A0.

Note: 0.718... from no working is M0A0

WARNING: Please note that this A1 mark is for correct solution only. So incorrect $[\dots]_0^1$ leading to e-2 is A0.

Note: If their part (a) is correct candidates can get M1A1 in part (b) for e-2 from no working.

Question Number	Scheme		Marks
2. (a)	$\left\{ \sqrt{\left(\frac{1+x}{1-x}\right)} \right\} = (1+x)^{\frac{1}{2}} (1-x)^{-\frac{1}{2}}$	$(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$	B1
	$= \left(1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \dots\right) \times \left(1 + \left(-\frac{1}{2}\right)\left(-x\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-x\right)^2 + \dots\right)$	See notes	M1 A1 A1
	$= \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right) \times \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \dots\right)$		
	$= 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{1}{2}x + \frac{1}{4}x^2 - \frac{1}{8}x^2 + \dots$	See notes	M1
	$= 1 + x + \frac{1}{2}x^2$	Answer is given in the question.	A1 *
(b)	$\sqrt{\left(\frac{1+\left(\frac{1}{26}\right)}{1-\left(\frac{1}{26}\right)}\right)} = 1 + \left(\frac{1}{26}\right) + \frac{1}{2}\left(\frac{1}{26}\right)^2$		[6] M1
	ie: $\frac{3\sqrt{3}}{5} = \frac{1405}{1352}$		B1
	so, $\sqrt{3} = \frac{7025}{4056}$	$\frac{7025}{4056}$	A1 cao
	Notes for Question 2		[3] 9

Notes for Question 2

(a) B1:
$$(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$$
 or $\sqrt{(1+x)}(1-x)^{-\frac{1}{2}}$ seen or implied. (Also allow $(1+x)(1-x)^{-1}$).

M1: Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,

Eg:
$$1 + \frac{1}{2}x$$
 or $+\left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$

or expands $(1-x)^{-\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,

Eg:
$$1 + \left(-\frac{1}{2}\right)(-x)$$
 or $+\left(-\frac{1}{2}\right)(-x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x)^2$ or $1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x)^2$

Also allow:
$$1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(x)^2$$
 for M1.

A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and x^4 terms)

A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4 terms)

Note: Candidates can give decimal equivalents when expanding out their binomial expansions.

M1: Multiplies out to give 1, exactly two terms in x and exactly three terms in x^2 .

A1: Candidate achieves the result on the exam paper. Make sure that their working is sound.

Special Case: Award SC FINAL M1A1 for *a correct*
$$\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right) \times \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \dots\right)$$

multiplied out with no errors to give either $1 + x + \frac{3}{8}x^2 + \frac{1}{4}x^2 - \frac{1}{8}x^2$ or $1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{1}{2}x + \frac{1}{8}x^2$ or

$$1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{4}x^2$$
 or $1 + \frac{1}{2}x + \frac{5}{8}x^2 + \frac{1}{2}x - \frac{1}{8}x^2$ leading to the correct answer of $1 + x + \frac{1}{2}x^2$.

	Notes for Question 2 Continued		
2. (a) ctd	Note: If a candidate writes down either $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$ or $(1-x)^{-\frac{1}{2}} = 1 + \frac{1}{2}x + \dots$	$-\frac{3}{8}x^2 + \dots$	
	with no working then you can award 1 st M1, 1 st A1. Note: If a candidate writes down both correct binomial expansions with no working, then you can 1 st M1, 1 st A1, 2 nd A1.		
(b)	M1: Substitutes $x = \frac{1}{26}$ into both sides of $\sqrt{\left(\frac{1+x}{1-x}\right)}$ and $1+x+\frac{1}{2}x^2$		
	B1: For sight of $\sqrt{\frac{27}{25}}$ (or better) and $\frac{1405}{1352}$ or equivalent fraction		
	Eg: $\frac{3\sqrt{3}}{5}$ and $\frac{1405}{1352}$ or $0.6\sqrt{3}$ and $\frac{1405}{1352}$ or $\frac{3\sqrt{3}}{5}$ and $1\frac{53}{1352}$ or $\sqrt{3}$ and $\frac{5}{3}\left(\frac{1405}{1352}\right)$		
	are fine for B1. A1: $\frac{7025}{4056}$ or any equivalent fraction, eg: $\frac{14050}{8112}$ or $\frac{182650}{105456}$ etc.		
	Special Case: Award SC: M1B1A0 for $\sqrt{3} \approx 1.732001972$ or truncated 1.732001 or awrt 1.73	32002.	
	Note that $\frac{7025}{4056} = 1.732001972$ and $\sqrt{3} = 1.732050808$		
Aliter 2. (a) Way 2	$\left\{ \sqrt{\frac{1+x}{1-x}} = \sqrt{\frac{(1+x)(1-x)}{(1+x)(1-x)}} = \sqrt{\frac{(1-x^2)}{(1-x)^2}} = \right\} = (1-x^2)^{\frac{1}{2}}(1-x)^{-1} $ $(1-x^2)^{\frac{1}{2}}(1-x)^{-1}$	B1	
	$= \left(1 + \left(\frac{1}{2}\right)(-x^2) + \dots\right) \times \left(1 + \left(-1\right)(-x) + \frac{(-1)(-2)}{2!}(-x)^2 + \dots\right)$ See notes	M1A1A1	
	$= \left(1 - \frac{1}{2}x^2 + \dots\right) \times \left(1 + x + x^2 + \dots\right)$		
	$=1 + x + x^2 - \frac{1}{2}x^2$ See notes	M1	
	$= 1 + x + \frac{1}{2}x^{2}$ Answer is given in the question.	A1 *	
Aliter 2 . (a)	B1 : $(1-x^2)^{\frac{1}{2}}(1-x)^{-1}$ seen or implied.	[0]	
Way 2	M1: Expands $(1-x^2)^{\frac{1}{2}}$ to give both terms simplified or un-simplified, $1+\left(\frac{1}{2}\right)(-x^2)$		
	or expands $(1-x)^{-1}$ to give any 2 out of 3 terms simplified or un-simplified,		
	Eg: $1 + (-1)(-x)$ or $ + (-1)(-x) + \frac{(-1)(-2)}{2!}(-x)^2$ or $1 + + \frac{(-1)(-2)}{2!}(-x)^2$		
	A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and x^4 terms) A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4 terms)		

M1: Multiplies out to give 1, exactly one term in x and exactly two terms in x^2 .

A1: Candidate achieves the result on the exam paper. Make sure that their working is sound.

	Notes for Question 2 Continued	
Aliter 2. (a) Way 3	$\left\{ \sqrt{\frac{1+x}{1-x}} = \sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}} = \right\} = (1+x)(1-x^2)^{-\frac{1}{2}} $ (1+x)(1-x ²) ^{-\frac{1}{2}}	B1
	$= (1+x)\left(1+\frac{1}{2}x^2+\dots\right)$ Must follow on from above.	M1A1A1
	$= 1 + x + \frac{1}{2}x^2$	dM1A1
	Note: The final M1 mark is dependent on the previous method mark for Way 3.	
Aliter 2. (a) Way 4	Assuming the result on the Question Paper. (You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 4).	
	$\left\{ \sqrt{\frac{1+x}{1-x}} \right\} = \frac{\sqrt{(1+x)}}{\sqrt{(1-x)}} = 1+x+\frac{1}{2}x^2 \right\} \Rightarrow (1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$	B1
	$(1+x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \dots \left\{ = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots \right\},$ $(1-x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)(-x) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^2 + \dots \left\{ = 1 - \frac{1}{2}x - \frac{1}{8}x^2 + \dots \right\}$	M1A1A1
	RHS = $\left(1 + x + \frac{1}{2}x^2\right)(1 - x)^{\frac{1}{2}} = \left(1 + x + \frac{1}{2}x^2\right)\left(1 - \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right)$	
	$=1 - \frac{1}{2}x - \frac{1}{8}x^2 + x - \frac{1}{2}x^2 + \frac{1}{2}x^2$ See notes	M1
	$=1+\frac{1}{2}x-\frac{1}{8}x^2$	
	So, LHS = $1 + \frac{1}{2}x - \frac{1}{8}x^2 = \text{RHS}$	A1 *
		[6]
	B1 : $(1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$ seen or implied.	
	M1: For Way 4, this M1 mark is dependent on the first B1 mark.	
	Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,	

Eg:
$$1 + \frac{1}{2}x$$
 or $+\left(\frac{1}{2}\right)x + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}x^2$ or $1 + \dots + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}x^2$

or expands $(1-x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,

Eg:
$$1 + \left(\frac{1}{2}\right)(-x)$$
 or $+\left(\frac{1}{2}\right)(-x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(-x)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(-x)^2$

A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and x^4 terms)

A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4 terms)

M1: For Way 4, this M1 mark is dependent on the first B1 mark.

Multiplies out RHS to give 1, exactly two terms in x and exactly three terms in x^2 .

A1: Candidate achieves the result on the exam paper. Candidate needs to have correctly processed both

the LHS and RHS of
$$(1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$$
.

Question Number	Scheme	Marks	
3. (a)	1.154701	B1 cao [1]	
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{6}$; $\times \left[1 + 2(1.035276 + \text{their } 1.154701) + 1.414214 \right]$	B1; <u>M1</u>	
	$= \frac{\pi}{12} \times 6.794168 = 1.778709023 = 1.7787 \text{ (4 dp)}$ 1.7787 or awrt 1.7787	A1	
(c)	$V = \pi \int_0^{\frac{\pi}{2}} \left(\sec\left(\frac{x}{2}\right) \right)^2 dx$ For $\pi \int \left(\sec\left(\frac{x}{2}\right) \right)^2$. Ignore limits and dx . Can be implied.	[3] B1	
	$= \{\pi\} \left[2 \tan\left(\frac{x}{2}\right) \right]_{0}^{\frac{\pi}{2}}$ $= \tan\left(\frac{x}{2}\right) \left[2 \tan\left(\frac{x}{2}\right) \right]_{0}^{\frac{\pi}{2}}$		
	$\frac{1}{2}$ or equivalent		
	$=2\pi$	A1 cao cso [4]	
	Natura for Operation 2	8	
(a)	Notes for Question 3 B1: 1.154701 correct answer only. Look for this on the table or in the candidate's working.		
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{6}$ or $\frac{\pi}{12}$ or awrt 0.262		
	M1: For structure of trapezium rule []		
	A1: anything that rounds to 1.7787 Note: It can be possible to award: (a) B0 (b) B1M1A1 (awrt 1.7787) Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 1.76	62747174	
	Note: Award B1M1A1 for $\frac{\pi}{12}(1+1.414214) + \frac{\pi}{6}(1.035276 + \text{their } 1.154701) = 1.778709023$		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	y,	
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{6} + 1 + 2(1.035276 + \text{their } 1.154701) + 1.414214$ (nb: answer of 7.05596	.).	
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{6}$ (1 + 1.414214) + 2(1.035276 + their 1.154701) (nb: answer of 5.01199).	
	Area $\approx \frac{\pi}{6} \times \left[\frac{1+1.035276}{2} + \frac{1.035276+1.154701}{2} + \frac{1.154701+1.414214}{2} \right] = 1.778709023$		
	B1: $\frac{\pi}{\epsilon}$ and a divisor of 2 on all terms inside brackets.		
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the	e 2.	

A1: anything that rounds to 1.7787

B1: For a correct statement of $\pi \int \left(\sec\left(\frac{x}{2}\right)\right)^2$ or $\pi \int \sec^2\left(\frac{x}{2}\right)$ or $\pi \int \frac{1}{\left(\cos\left(\frac{x}{2}\right)\right)^2} \left\{dx\right\}$.

Ignore limits and dx. Can be implied.

Note: Unless a correct expression stated $\pi \int \sec\left(\frac{x^2}{4}\right)$ would be B0.

M1: $\pm \lambda \tan\left(\frac{x}{2}\right)$ from any working.

A1: $2\tan\left(\frac{x}{2}\right)$ or $\frac{1}{\left(\frac{1}{2}\right)}\tan\left(\frac{x}{2}\right)$ from any working.

A1: 2π from a correct solution only.

Note: The π in the volume formula is only required for the B1 mark and the final A1 mark.

Note: Decimal answer of 6.283... without correct exact answer is A0.

Note: The B1 mark can be implied by later working – as long as it is clear that the candidate has applied $\pi \int y^2$ in their working.

Note: Writing the correct formula of $V = \pi \int y^2 \{dx\}$, but incorrectly applying it is B0.

Question Number	Scheme	Marks	
4.	$x = 2\sin t$, $y = 1 - \cos 2t$ $\left\{ = 2\sin^2 t \right\}$, $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$		
(a)	$\frac{dx}{dt} = 2\cos t, \frac{dy}{dt} = 2\sin 2t \text{or } \frac{dy}{dt} = 4\sin t \cos t$ At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1 B1	
	So, $\frac{dy}{dx} = \frac{2\sin 2t}{2\cos t} \left\{ = \frac{4\cos t \sin t}{2\cos t} = 2\sin t \right\}$ Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and substitutes $t = \frac{\pi}{6}$ into their $\frac{dy}{dx}$.	M1;	
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{2\sin\left(\frac{2\pi}{6}\right)}{2\cos\left(\frac{\pi}{6}\right)}$; = 1 Correct value for $\frac{dy}{dx}$.		
(b)	$y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ = $2\sin^2 t$	[4] M1	
	So, $y = 2\left(\frac{x}{2}\right)^2$ or $y = \frac{x^2}{2}$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ $y = \frac{x^2}{2}$ or equivalent.	A1 cso isw	
	Either $k = 2$ or $-2 \leqslant x \leqslant 2$	B1 [3]	
(c)	Range: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$ See notes	B1 B1 [2]	
	Natura for Orandon A	9	
(a)	Notes for Question 4		
	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.		
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.		
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression for this mark may be implied by their final answer.	or $\frac{\mathrm{d}y}{\mathrm{d}x}$.	
	Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied).		
	A1: For an answer of 1 by correct solution only.		
	Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorr	ect methods.	
	Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$.		
	Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\sin 2t$ leading to $\frac{dy}{dx} = \frac{-2\sin 2t}{-2\cos t}$		
	which after substitution of $t = \frac{\pi}{6}$, yields $\frac{dy}{dx} = 1$		
	Note: It is possible for you to mark part(a), part (b) and part (c) together. Ignore labelling!		

	Notes for Question 4 Continued					
4. (b)			$s2t = 1 - 2\sin^2 t$ or $\cos 2t = 2\cos^2 t - 1$ or			
	$\cos 2t =$	$\cos^2 t - \sin^2 t$ in an attempt to ge	et y in terms of $\sin^2 t$ or get y in terms of $\cos^2 t$			
	or get y	in terms of $\sin^2 t$ and $\cos^2 t$. W	riting down $y = 2\sin^2 t$ is fine for M1.			
	A1: Achieve	es $y = \frac{x^2}{2}$ or un-simplified equival	ents in the form $y = f(x)$. For example:			
		` '	$-2\left(1-\left(\frac{x}{2}\right)^2\right)$ or $y=1-\frac{4-x^2}{4}+\frac{x^2}{4}$			
	IMPOR		a candidate states a correct version of the Cartesian equation. s this result can be fluked from an incorrect method.			
			$-2 \le x \le 2$. Note: $-2 \le k \le 2$ unless k stated as 2 is B0.			
(c)		alues of 0 and/or 2 need to be eva	<u>-</u>			
			t, using acceptable notation. Eg: $f(x) \ge 0$ or $f(x) \le 2$			
		$0 \leqslant 2$ or $0 \leqslant y \leqslant 2$ or $0 \leqslant f \leqslant 1$				
	Special Case: SC: B1B0 for either $0 < f(x) < 2$ or $0 < f < 2$ or $0 < y < 2$ or $(0, 2)$					
	_	Special Case: SC: B1B0 for $0 \le x \le 2$.				
	IMPORTANT: Note that: Therefore candidates can use either y or f in place of $f(x)$					
	Examples:	$0 \leqslant x \leqslant 2$ is SC: B1B0	0 < x < 2 is B0B0			
		$x \geqslant 0$ is B0B0	$x \leqslant 2$ is B0B0			
		f(x) > 0 is B0B0	f(x) < 2 is B0B0			
		x > 0 is B0B0	x < 2 is B0B0			
		$0 \geqslant f(x) \geqslant 2$ is B0B0	$0 < f(x) \leqslant 2 \text{ is B1B0}$			
		$0 \le f(x) < 2$ is B1B0.	$f(x) \geqslant 0$ is B1B0			
		$f(x) \leqslant 2$ is B1B0	$f(x) \ge 0$ and $f(x) \le 2$ is B1B1. Must state AND {or}			
		$2 \leqslant f(x) \leqslant 2$ is B0B0	$f(x) \geqslant 0$ or $f(x) \leqslant 2$ is B1B0.			
		$ f(x) \leqslant 2$ is B1B0	$ f(x) \geqslant 2$ is B0B0			
		$1 \leqslant f(x) \leqslant 2$ is B1B0	1 < f(x) < 2 is B0B0			
		$0 \leqslant f(x) \leqslant 4$ is B1B0	0 < f(x) < 4 is B0B0			
		$0 \leqslant \text{Range} \leqslant 2$ is B1B0	Range is in between 0 and 2 is B1B0			
		0 < Range < 2 is B0B0.	Range $\geqslant 0$ is B1B0			
	l					

Aliter 4. (a) Way 2

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos t \,, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = 2\sin 2t \,,$$

At
$$t = \frac{\pi}{6}$$
, $\frac{dx}{dt} = 2\cos\left(\frac{\pi}{6}\right) = \sqrt{3}$, $\frac{dy}{dt} = 2\sin\left(\frac{2\pi}{6}\right) = \sqrt{3}$

 $Range \leqslant 2 \ is \ B1B0$

[0, 2] is B1B1

Hence
$$\frac{dy}{dx} = 1$$

So B1, B1.

Range $\geqslant 0$ and Range $\leqslant 2$ is B1B0.

(0, 2) is SC B1B0

So implied M1, A1.

	Notes for Question 4 Continued			
Aliter	1 a dy	orrect differentiation of th	eir Cartesian equation	. B1ft
, , , ,	$y = \frac{1}{2}x^2 \Rightarrow \frac{dy}{dx} = x$ Finds $\frac{dy}{dx}$	$\frac{1}{x} = x$, using the correct C	artesian equation only	. B1
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = 2\sin\left(\frac{\pi}{6}\right)$	Finds the val	ue of "x" when $t = \frac{\pi}{6}$	M1
	6 dx (6)	and substitutes this into their		-
	= 1	Co	orrect value for $\frac{dy}{dx}$ of 1	1 A1
Aliter 4. (b)	$y = 1 - \cos 2t = 1 - (2\cos^2 t - 1)$		M1	
Way 2	$y = 2 - 2\cos^2 t \implies \cos^2 t = \frac{2 - y}{2} \implies 1 - \sin^2 t =$	$=\frac{2-y}{2}$		
	$1 - \left(\frac{x}{2}\right)^2 = \frac{2 - y}{2}$		(Must be in the form	y = f(x).
	$y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$		A1	
Aliter 4. (b)	$x = 2\sin t \implies t = \sin^{-1}\left(\frac{x}{2}\right)$			
Way 3	(x)		Rearranges to make t the subject and substitutes the result into y . $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$ A1 oe	
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$			
Aliter 4. (b)	$y = 1 - \cos 2t \implies \cos 2t = 1 - y \implies t = \frac{1}{2}\cos^{-1}$	(1-y)		
Way 4	So, $x = \pm 2\sin\left(\frac{1}{2}\cos^{-1}(1-y)\right)$	_	o make t the subject ites the result into y.	M1
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	y = 1	$-\cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	A1 oe
Aliter 4. (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin t = x \implies y = \frac{1}{2}x^2 + c$	$\frac{\mathrm{d}y}{\mathrm{d}x}$ =	$= x \implies y = \frac{1}{2}x^2 + c$	M1
Way 5	Eg: when eg: $t = 0$ (nb: $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$),	Full method	of finding $y = \frac{1}{2}x^2$	A1
	$x = 0, y = 1 - 1 = 0 \Rightarrow c = 0 \Rightarrow y = \frac{1}{2}x^{2}$		ue of t : $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$	
	Note: $\frac{dy}{dx} = 2\sin t = x \implies y = \frac{1}{2}x^2$, with no attern	apt to find c is M1A0.		

Question Number	Scheme	Marks	
5. (a)	$\left\{x = u^2 \Longrightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{or} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$	B1	
	$\left\{ \int \frac{1}{x(2\sqrt{x} - 1)} \mathrm{d}x \right\} = \int \frac{1}{u^2(2u - 1)} 2u \mathrm{d}u$	M1	
	$= \int \frac{2}{u(2u-1)} \mathrm{d}u$	A1 * cso	
(b)	$2 \qquad A \qquad B \qquad \qquad 2 \qquad A(2 \qquad 1) + B$	[3]	
	$\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)} \Rightarrow 2 \equiv A(2u-1) + Bu$ $u = 0 \Rightarrow 2 = -A \Rightarrow A = -2$ $u = \frac{1}{2} \Rightarrow 2 = \frac{1}{2}B \Rightarrow B = 4$ See notes	M1 A1	
	So $\int \frac{2}{u(2u-1)} du = \int \frac{-2}{u} + \frac{4}{(2u-1)} du$ Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ to obtain any one of $\pm \lambda \ln u$ or $\pm \mu \ln(2u-1)$	M1	
	$= -2\ln u + 2\ln(2u - 1)$ At least one term correctly followed through $-2\ln u + 2\ln(2u - 1).$	A1 ft A1 cao	
	So, $\left[-2\ln u + 2\ln(2u-1)\right]_1^3$		
	$= (-2\ln 3 + 2\ln(2(3) - 1)) - (-2\ln 1 + 2\ln(2(1) - 1))$ Applies limits of 3 and 1 in <i>u</i> or 9 and 1 in <i>x</i> in their integrated function and subtracts the correct way round.	M1	
	$= -2\ln 3 + 2\ln 5 - (0)$		
	$=2\ln\left(\frac{5}{3}\right)$	A1 cso cao	
	Notes for Questian 5	10	
()	Notes for Question 5 B1: $\frac{dx}{du} = 2u$ or $dx = 2u du$ or $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ or $du = \frac{dx}{2\sqrt{x}}$		
(a)			
	M1: A full substitution producing an integral in u only (including the du) (Integral sign not not produce the state of the state	•	
	The candidate needs to deal with the "x", the " $(2\sqrt{x} - 1)$ " and the "dx" and converts from integral term in x to an integral in u. (Remember the integral sign is not necessary for M		
(b)	A1*: leading to the result printed on the question paper (including the du). (Integral sign is n	,	
	M1: Writing $\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)}$ or writing $\frac{1}{u(2u-1)} \equiv \frac{P}{u} + \frac{Q}{(2u-1)}$ and a complete	te method for	
	finding the value of at least one of their A or their B (or their P or their Q). A1: Both their $A = -2$ and their $B = 4$. (Or their $P = -1$ and their $Q = 2$ with the multiplying factor of		
	2 in front of the integral sign).		
	M1: Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ (i.e. <i>a two term partial fraction</i>) to obtain any	one of	
	$\pm \lambda \ln u$ or $\pm \mu \ln(2u - 1)$ or $\pm \mu \ln\left(u - \frac{1}{2}\right)$		
	A1ft: At least one term correctly followed through from their <i>A</i> or from their <i>B</i> (or their <i>P</i> and A1: $-2 \ln u + 2 \ln(2u - 1)$	their Q).	

Notes for Question 5 Continued

5. (b) ctd M1: Applies limits of 3 and 1 in u or 9 and 1 in x in their (i.e. any) changed function and subtracts the

correct way round.

Note: If a candidate just writes $(-2\ln 3 + 2\ln(2(3) - 1))$ oe, this is ok for M1.

A1: $2\ln\left(\frac{5}{3}\right)$ correct answer only. (Note: a = 5, b = 3).

Important note: Award M0A0M1A1A0 for a candidate who writes

$$\int \frac{2}{u(2u-1)} du = \int \frac{2}{u} + \frac{2}{(2u-1)} du = 2\ln u + \ln(2u-1)$$

AS EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ AS PARTIAL FRACTIONS IS GIVEN.

Important note: Award M0A0M0A0A0 for a candidate who writes down either

$$\int \frac{2}{u(2u-1)} du = 2\ln u + 2\ln(2u-1) \quad \text{or} \quad \int \frac{2}{u(2u-1)} du = 2\ln u + \ln(2u-1)$$

WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ as partial fractions.

Important note: Award M1A1M1A1A1 for a candidate who writes down

$$\int \frac{2}{u(2u-1)} \, \mathrm{d}u = -2\ln u + 2\ln(2u-1)$$

WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ as partial fractions.

Note: In part (b) if they lose the "2" and find $\int \frac{1}{u(2u-1)} du$ we can allow a maximum of

M1A0 M1A1ftA0 M1A0.

Question Number	Sci	heme			Marl	ks
6.	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda (120 - \theta), \theta \leqslant 100$					
(a)	$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t \qquad \text{or } \int$	$\frac{1}{\lambda(120-\theta)}\mathrm{d}\theta = \int \mathrm{d}\theta$	dt		B1	
	$-\ln(120-\theta)$; = $\lambda t + c$ or -	$-\frac{1}{\lambda}\ln(120-\theta);=t+$	c	See notes	M1 A1; M1 A1	;
	$\{t = 0, \theta = 20 \Rightarrow\} -\ln(120 - 20) =$	$=\lambda(0)+c$		See notes	M1	
	$c = -\ln 100 \Rightarrow -\ln (120 - \theta) = \lambda t$	$-\ln 100$				
	then either	or				
	$-\lambda t = \ln(120 - \theta) - \ln 100$	$\lambda t = \ln 100 - \ln (120)$	$-\theta$			
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln \left(\frac{100}{120 - \theta} \right)$				
	$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$			dddM1	
	$100e^{-\lambda t} = 120 - \theta$	$(120 - \theta)e^{\lambda t} = 100$ $\Rightarrow 120 - \theta = 100e^{-\lambda t}$.t		A1 *	
	leading to $\theta = 120 - 120$	$100e^{-\lambda t}$			711	
(b)	$\{\lambda = 0.01, \theta = 100 \Rightarrow\}$ $100 = 120$				M1	[8]
	$\Rightarrow 100e^{-0.01t} = 120 - 100 \Rightarrow -0.01$	$dt = \ln\left(\frac{120 - 100}{100}\right)$		ect order of operations by $m 100 = 120 - 100e^{-0.01t}$		
	$t = \frac{1}{-0.01} \ln \left(\frac{120 - 100}{100} \right)$ to give $t =$ and $t = A \ln B$, where $B > 0$		dM1			
	$\left\{ t = \frac{1}{-0.01} \ln \left(\frac{1}{5} \right) = 100 \ln 5 \right\}$					
	t = 160.94379 = 161 (s) (nearest	second)		awrt 161	A1	
				[3] 11		

Notes for Question 6

(a) **B1:** Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.

Either

M1:
$$\int \frac{1}{120 - \theta} d\theta \rightarrow \pm A \ln(120 - \theta)$$
or
$$\int \frac{1}{\lambda(120 - \theta)} d\theta \rightarrow \pm A \ln(120 - \theta), A \text{ is a constant.}$$
A1:
$$\int \frac{1}{120 - \theta} d\theta \rightarrow -\ln(120 - \theta)$$

$$\int \frac{1}{\lambda(120 - \theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120 - \theta) \text{ or } -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta),$$
M1:
$$\int \lambda dt \rightarrow \lambda t$$

$$\int 1 dt \rightarrow t$$

or $\int 1 \, dt \rightarrow t$ or $\int 1 \, dt \rightarrow t + c$ The + c can appear on either side of the equation. **A1:** $\int \lambda \, dt \rightarrow \lambda t + c$

IMPORTANT: +c can be on either side of their equation for the 2^{nd} A1 mark.

M1: Substitutes t = 0 AND $\theta = 20$ in an integrated or changed equation containing c (or A or $\ln A$). **Note** that this mark can be implied by the correct value of c. { Note that $-\ln 100 = -4.60517...$ }.

dddM1: Uses their value of c which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded.

A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either:

(1):
$$e^{-\lambda t} = \frac{120 - \theta}{100} \Rightarrow 100e^{-\lambda t} = 120 - \theta \Rightarrow \theta = 120 - 100e^{-\lambda t}$$

or (2): $e^{\lambda t} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{\lambda t} = 100 \Rightarrow 120 - \theta = 100e^{-\lambda t} \Rightarrow \theta = 120 - 100e^{-\lambda t}$

Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a).

(b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting This mark can be implied by subsequent working.

dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to t = ...

Note: that the 2nd Method mark is dependent on the 1st Method mark being awarded in part (b).

A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units).

Aliter
6. (a)
Way 2

$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t$		B1
$-\ln(120 - \theta) = \lambda t + c$	See notes	M1 A1; M1 A1
$-\ln(120 - \theta) = \lambda t + c$		
$\ln(120 - \theta) = -\lambda t + c$		

$$120 - \theta = Ae^{-\lambda t}$$

$$\theta = 120 - Ae^{-\lambda t}$$

$$\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0}$$

$$\begin{cases} t = 0, \ \theta = 20 \implies \} \ 20 = 120 - Ae^0 \\ A = 120 - 20 = 100 \end{cases}$$
So, $\theta = 120 - 100e^{-\lambda t}$

	(u)	M1: Substitutes $t = 0$ AND $\theta = 20$	0	ning their constant of integra	ation which
		could be c or A. Note that this mark dddM1: Uses a fully correct methor their evaluated constant of integration	c can be implied by the correct value of to eliminate their logarithms and on.	lue of c or A . In the distribution of th	
		Note: This mark is dependent on al			
		Note: $\ln(120 - \theta) = -\lambda t + c$ lea	ding to $120 - \theta = e^{-\lambda t} + e^c$ or 12	$20 - \theta = e^{-\lambda t} + A, \text{ would be}$	e dddM0.
		A1*: Same as the original scheme			
		Note: The jump from $\ln(120 - \theta)$	$= -\lambda t + c$ to $120 - \theta = Ae^{-\lambda t}$	with no incorrect working	is condoned
ļ	A 1°4	in part (a).			
	Aliter 6. (a) Way 3	$\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \left\{ \Rightarrow \int \frac{-}{\theta - \theta} \right\}$	$\frac{1}{120} d\theta = \int \lambda dt$		B1
	v	$-\ln\left \theta - 120\right = \lambda t + c$		Modulus required for 1 st A1.	M1 A1 M1 A1
		$\{t = 0, \theta = 20 \Rightarrow\} -\ln 20 - 120 =$		Modulus not required here!	M1
		$\Rightarrow c = -\ln 100 \Rightarrow -\ln \theta - 120 = 0$	$\lambda t - \ln 100$		
		then either $-\lambda t = \ln \theta - 120 - \ln 100$	or	\neg	
		$-\lambda t = \ln \theta - 120 - \ln 100$	$\lambda t = \ln 100 - \ln \left \theta - 120 \right $		
		$-\lambda t = \ln \left \frac{\theta - 120}{100} \right $	$\lambda t = \ln \left \frac{100}{\theta - 120} \right $		
		As $\theta \le$	€ 100		
		$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln \left(\frac{100}{120 - \theta} \right)$	Understanding of	11126
		$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$	modulus is required here!	dddM1
			$(120 - \theta)e^{\lambda t} = 100$		
		$100e^{-\lambda t} = 120 - \theta$	$(120 - \theta) e^{\lambda t} = 100$ $\Rightarrow 120 - \theta = 100 e^{-\lambda t}$		
		leading to $\theta = 120 - 100e^{-\lambda t}$			A1 *
		leading to $b = 120 -$	1000		[8]
ŀ		B1: Mark as in the original scheme			[0]
		M1: Mark as in the original scheme			
		A1: $\int \frac{1}{120 - \theta} d\theta \rightarrow -\ln \theta - 120 $. (The modulus is required here	e).	
		M1A1: Mark as in the original sche			
		M1: Substitutes $t = 0$ AND $\theta = 20$	• •	· ·	ation which
		could be c or A . Mark as in the original call	0 0		
		dddM1: Mark as in the original sch	neme AND the candidate must de	monstrate that they have cor	iverted

 $\ln |\theta - 120|$ to $\ln (120 - \theta)$ in their working. **Note:** This mark is dependent on all three previous method

Notes for Question 6 Continued

B1M1A1M1A1: Mark as in the original scheme.

marks being awarded.

A1: Mark as in the original scheme.

(a)

Notes for Question 6 Continued		
Aliter 6. (a)	Use of an integrating factor	
Way 4	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda (120 - \theta) \implies \frac{\mathrm{d}\theta}{\mathrm{d}t} + \lambda \theta = 120\lambda$	
	$IF = e^{\lambda t}$	B1
	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\lambda t}\theta)=120\lambda\mathrm{e}^{\lambda t},$	M1A1
	$e^{\lambda t} \theta = 120 \lambda e^{\lambda t} + k$	M1A1
	$\theta = 120 + Ke^{-\lambda t}$	M1
	$\theta = 120 + Ke^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} -100 = K$ $\theta = 120 - 100e^{-\lambda t}$	
	$\theta = 120 - 100e^{-\lambda t}$	M1A1

Question Number	Scheme		Marks	
7.	$x^2 + 4xy + y^2 + 27 = 0$			
(a)	$\left\{ \underbrace{\frac{dy}{dx}} \times \right\} \underline{2x} + \left(\underline{\frac{4y + 4x \frac{dy}{dx}}{dx}} \right) + \underline{2y \frac{dy}{dx}} = \underline{0}$		M1 <u>A1</u> <u>B1</u>	
	$2x + 4y + (4x + 2y)\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\partial}{\partial x} = 0$	dM1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x - 4y}{4x + 2y} \left\{ = \frac{-x - 2y}{2x + y} \right\}$		A1 cso oe	
			[5]	
(b)	4x +	2y = 0	M1	
	y = -2x	$x = -\frac{1}{2}y$	A1	
	$x^2 + 4x(-2x) + (-2x)^2 + 27 = 0$	$\left(-\frac{1}{2}y\right)^{2} + 4\left(-\frac{1}{2}y\right)y + y^{2} + 27 = 0$	M1*	
	$-3x^2 + 27 = 0$	$-\frac{3}{4}y^2 + 27 = 0$		
	$x^2 = 9$	$y^2 = 36$	dM1*	
	x = -3	<i>y</i> = 6	A1	
	When $x = -3$, $y = -2(-3)$	When $y = 6$, $x = -\frac{1}{2}(6)$	ddM1*	
	y = 6	x = -3	A1 cso	
			[7] 12	
		Notes for Question 7		
(a)	M1: Differentiates implicitly to inclu	ide either $4x \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).		
	A1 : $(x^2) \to (\underline{2x})$ and $(+ y^2 + 27)$	$=0 \rightarrow +2y\frac{\mathrm{d}y}{\mathrm{d}x}=0$		
		d by rearrangement of their equation.		
		leading to $4x\frac{dy}{dx} + 2y\frac{dy}{dx} = -2x - 4y$ will get A1 (im	plied).	
	B1 : $4y + 4x \frac{dy}{dx}$ or $4\left(y + x \frac{dy}{dx}\right)$	or equivalent		
	dM1 : An attempt to factorise out $\frac{dy}{dx}$	as long as there are at least two terms in $\frac{dy}{dx}$.		
	ie + $(4x + 2y)\frac{dy}{dx} =$ or	$\dots + 2(2x + y)\frac{\mathrm{d}y}{\mathrm{d}x} = \dots$		
	Notes This are also done 1			

Note: This mark is dependent on the previous method mark being awarded. **A1:** For $\frac{-2x-4y}{4x+2y}$ or equivalent. Eg: $\frac{+2x+4y}{-4x-2y}$ or $\frac{-2(x+2y)}{4x+2y}$ or $\frac{-x-2y}{2x+y}$

cso: If the candidate's solution is not completely correct, then do not give this mark.

- (b) M1: Sets the denominator of their $\frac{dy}{dx}$ equal to zero (or the numerator of their $\frac{dx}{dy}$ equal to zero) oe.
 - **A1:** Rearranges to give either y = -2x or $x = -\frac{1}{2}y$. (correct solution only).

The first two marks can be implied from later working, i.e. for a correct substitution of either y = -2x into y^2 or for $x = -\frac{1}{2}y$ into 4xy.

- M1*: Substitutes $y = \pm \lambda x$ or or $x = \pm \mu y$ or $y = \pm \lambda x \pm a$ or $x = \pm \mu y \pm b$ ($\lambda \neq 0, \mu \neq 0$) into $x^2 + 4xy + y^2 + 27 = 0$ to form an equation in one variable.
- **dM1*:** leading to at least either $x^2 = A$, A > 0 or $y^2 = B$, B > 0

Note: This mark is dependent on the previous method mark (M1*) being awarded.

A1: For x = -3 (ignore x = 3) or if y was found first, y = 6 (ignore y = -6) (correct solution only). ddM1* Substitutes their value of x into $y = \pm \lambda x$ to give y = value

or substitutes their value of x into $x^2 + 4xy + y^2 + 27 = 0$ to give y = value.

Alternatively, substitutes their value of y into $x = \pm \mu y$ to give x = value

or substitutes their value of y into $x^2 + 4xy + y^2 + 27 = 0$ to give x =value

Note: This mark is dependent on the two previous method marks (M1* and dM1*) being awarded. **A1:** (-3, 6) **cso**.

Note: If a candidate offers two sets of coordinates without either rejecting the incorrect set or accepting the correct set then award A0. **DO NOT APPLY ISW ON THIS OCCASION.**

Note: x = -3 followed later in working by y = 6 is fine for A1.

Note: y = 6 followed later in working by x = -3 is fine for A1.

Note: x = -3, 3 followed later in working by y = 6 is A0, unless candidate indicates that they are rejecting x = 3

Note: Candidates who set the numerator of $\frac{dy}{dx}$ equal to 0 (or the denominator of their $\frac{dx}{dy}$ equal to zero) can *only achieve a maximum of 3 marks* in this part. They can only achieve the 2nd, 3rd and 4th Method marks to give a maximum marking profile of M0A0M1M1A0M1A0. They will usually find (-6, 3) { or even (6, -3) }.

Note: Candidates who set *the numerator* or *the denominator* of $\frac{dy}{dx}$ equal to $\pm k$ (usually k = 1) can *only achieve a maximum of 3 marks* in this part. They can only achieve the 2^{nd} , 3^{rd} and 4^{th} Method marks to give a marking profile of M0A0M1M1A0M1A0.

Special Case: It is possible for a candidate who does not achieve full marks in part (a), (but has a correct denominator for $\frac{dy}{dx}$) to gain all 7 marks in part (b).

Eg: An incorrect part (a) answer of $\frac{dy}{dx} = \frac{2x - 4y}{4x + 2y}$ can lead to a correct (-3, 6) in part (b) and 7 marks.

Question Number	Σρηρηγ		Marks	
8.	$l: \mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, A(3, -2, 6), \overrightarrow{OP} = \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix}$			
(a)	$\left\{ \overrightarrow{PA} \right\} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix} \qquad \left\{ \overrightarrow{AP} \right\} = \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \qquad \begin{array}{c} \text{Finds the difference} \\ \text{between } \overrightarrow{OA} \text{ and } \overrightarrow{OP} \end{array}.$ Ignore labelling.	M1		
	$= \begin{pmatrix} 3+p \\ -2 \\ 6-2p \end{pmatrix} = \begin{pmatrix} -3-p \\ 2 \\ 2p-6 \end{pmatrix}$ Correct difference.	A1		
	$\begin{pmatrix} 3+p \\ -2 \\ 6-2p \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = 6+2p-4-6+2p=0$ See notes.	M1 A1 cso		
	p = 1		[4]	
(b)	$ AP = \sqrt{4^2 + (-2)^2 + 4^2}$ or $ AP = \sqrt{(-4)^2 + 2^2 + (-4)^2}$ See notes.	M1		
	So, PA or $AP = \sqrt{36}$ or 6 cao			
	It follows that, $AB = "6" \{= PA \}$ or $PB = "6\sqrt{2}" \{= \sqrt{2}PA \}$ See notes.			
	{Note that $AB = "6" = 2$ (the modulus of the direction vector of l)}			
	$\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{or}$ $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{and} \overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ Uses a correct method in order to find both possible sets of coordinates of B .	M1		
	$= \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix} \text{ and } \begin{pmatrix} -1 \\ -6 \\ 8 \end{pmatrix}$ Both coordinates are correct.	A1 cao		
			[5] 9	
Notes for Question 8				
8. (a)	1721 Times the difference setween off and of Figure Installing.			
	If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference. A1: Accept any of $\begin{pmatrix} 3+p\\-2\\6-2p \end{pmatrix}$ or $(3+p)\mathbf{i}-2\mathbf{j}+(6-2p)\mathbf{k}$ or $\begin{pmatrix} -3-p\\2\\2p-6 \end{pmatrix}$ or $(-3-p)\mathbf{i}+2\mathbf{j}+(2p-6)\mathbf{k}$			

8. (a)

M1: Applies the formula $\overrightarrow{PA} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ or $\overrightarrow{AP} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ correctly to give a linear equation in p which is set equal to

zero. **Note:** The dot product can also be with $\pm k \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$. Eg: Some candidates may find

 $\begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ -5 \end{pmatrix}$, for instance, and use this in their dot product which is fine for M1.

A1: Finds p = 1 from a correct solution only.

Note: The direction of subtraction is not important in part (a).

(b) M1: Uses their value of p and Pythagoras to obtain a numerical expression for either AP or AP^2 or

PA². Eg: PA or AP = $\sqrt{4^2 + (-2)^2 + 4^2}$ or $\sqrt{(-4)^2 + 2^2 + (-4)^2}$ or $\sqrt{4^2 + 2^2 + 4^2}$ or PA^2 or P

A1: AP or PA = $\sqrt{36}$ or 6 **cao** or AP² = 36 **cao**

B1ft: States or it is clear from their working that AB = "6" {= their evaluated PA } or

 $PB = "6" \sqrt{2} \left\{ = \sqrt{2} \text{ (their evaluated } PA) \right\}$.

Note: So a correct follow length is required here for either AB or PB using their evaluated PA.

Note: This mark may be found on a diagram.

Note: If a candidate states that $|\overrightarrow{AP}| = |\overrightarrow{AB}|$ and then goes on to find $|\overrightarrow{AP}| = 6$ then the B1 mark can be implied.

IMPORTANT: This mark may be implied as part of expressions such as:

$$\{AB = \} \sqrt{(10 + 2\lambda)^2 + (10 + 2\lambda)^2 + (-5 - \lambda)^2} = \mathbf{6} \text{ or } \{AB^2 = \} (10 + 2\lambda)^2 + (10 + 2\lambda)^2 + (-5 - \lambda)^2 = \mathbf{36}$$
 or
$$\{PB = \} \sqrt{(14 + 2\lambda)^2 + (8 + 2\lambda)^2 + (-1 - \lambda)^2} = \mathbf{6}\sqrt{\mathbf{2}} \text{ or } \{PB^2 = \} (14 + 2\lambda)^2 + (8 + 2\lambda)^2 + (-1 - \lambda)^2 = \mathbf{72}$$

M1: Uses a full method in order to find **both** possible sets of coordinates of *B*:

Eg 1: $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ Eg 2: $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$

Note: If a candidate achieves at least one of the correct (7, 2, 4) or (-1, -6, 8) then award SC M1 here.

Note: $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ is M0.

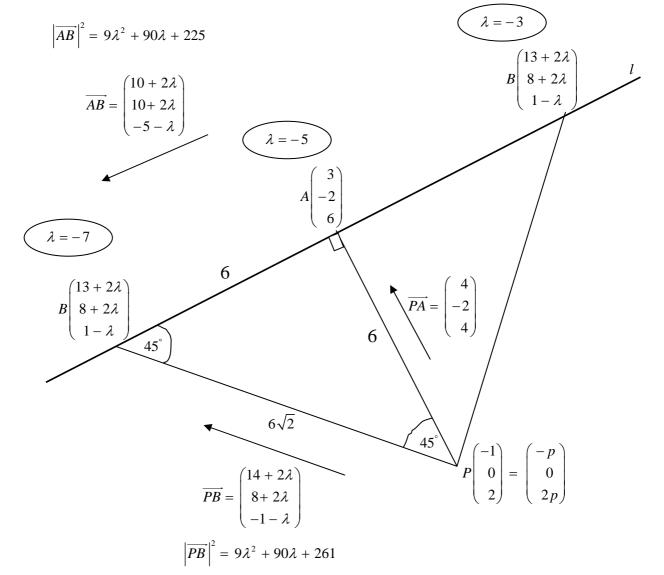
A1: For both (7, 2, 4) and (-1, -6, 8). Accept vector notation or \mathbf{i} , \mathbf{j} , \mathbf{k} notation.

Note: All the marks are accessible in part (b) if p = 1 is found from incorrect working in part (a).

Note: Imply M1A1B1 and award M1 for candidates who write: $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$, with little or no

earlier working.

8. Helpful Diagram!



Way 2: Setting AB = "6" or $AB^2 = "36"$ **Note:** It is possible for you to apply the main scheme for Way 2. 8. (b) ${AB = "6" \Rightarrow AB^2 = "36" \Rightarrow} (10 + 2\lambda)^2 + (10 + 2\lambda)^2 + (-5 - \lambda)^2 = "36"}$ **B1ft** could be implied here.

$$9\lambda^{2} + 90\lambda + 225 = 36 \Rightarrow 9\lambda^{2} + 90\lambda + 189 = 0$$
$$\lambda^{2} + 10\lambda + 21 = 0 \Rightarrow (\lambda + 3)(\lambda + 7) = 0$$
$$\lambda = -3, -7$$

Then apply final M1 A1 as in the original scheme. ... M1 A1

Way 3: Setting $PB = "6\sqrt{2}"$ or $PB^2 = "72"$ **Note:** It is possible for you to apply the main scheme for Way 3. **8.** (b) ${PB = "6"\sqrt{2} \Rightarrow PB^2 = "72" \Rightarrow}$ $(14 + 2\lambda)^2 + (8 + 2\lambda)^2 + (-1 - \lambda)^2 = "72"$

$$9\lambda^2 + 90\lambda + 261 = 72 \implies 9\lambda^2 + 90\lambda + 189 = 0$$

 $\lambda^2 + 10\lambda + 21 = 0 \implies (\lambda + 3)(\lambda + 7) = 0$

 $\lambda = -3, -7$ Then apply final M1 A1 as in the original scheme. ... M1 A1

B1ft could be implied here.

(You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for 8. (b) Wav 4).

Way 4: Using the dot product formula between \overrightarrow{PA} and \overrightarrow{PB} , ie: $\cos 45^{\circ} = \frac{PA \bullet PB}{|\overrightarrow{PA}| . |\overrightarrow{PB}|}$

$$\overrightarrow{PA} \bullet \overrightarrow{PB} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 14 + 2\lambda \\ 8 + 2\lambda \\ -1 - \lambda \end{pmatrix} = 56 + 8\lambda - 16 - 4\lambda - 4 - 4\lambda = 36$$

$$\left\{\cos 45^{\circ} = \right\} \frac{1}{\sqrt{2}} = \frac{36}{6\sqrt{9\lambda^2 + 90\lambda + 261}}$$

$$\frac{1}{2} = \frac{36}{9\lambda^2 + 90\lambda + 261}$$

$$9\lambda^{2} + 90\lambda + 261 = 72 \implies 9\lambda^{2} + 90\lambda + 189 = 0$$
$$\lambda^{2} + 10\lambda + 21 = 0 \implies (\lambda + 3)(\lambda + 7) = 0$$
$$\lambda = -3, -7$$

For finding $|\overrightarrow{PA}|$ as before. M1 $\sqrt{36}$ or 6 A1 cao $|\overrightarrow{PB}| = \sqrt{9\lambda^2 + 90\lambda + 261}$ B1 oe

Then apply final M1 A1 as in the original scheme. ... M1 A1

(You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for 8. (b) Way 5).

Way 5: Using the dot product formula between \overrightarrow{AB} and \overrightarrow{PB} , ie: $\cos 45^{\circ} = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{|\overrightarrow{AB}| \cdot |\overrightarrow{PB}|}$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\begin{pmatrix} 10 + 2\lambda \\ 10 + 2\lambda \\ -5 - \lambda \end{pmatrix}}{\sqrt{9\lambda^2 + 90\lambda + 225}} \sqrt{\frac{14 + 2\lambda}{9\lambda^2 + 90\lambda + 261}}$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\begin{pmatrix} 10 + 2\lambda \\ 10 + 2\lambda \\ -1 - \lambda \end{pmatrix}}{\sqrt{9\lambda^2 + 90\lambda + 225}} \frac{(14 + 2\lambda)}{\sqrt{8 + 2\lambda}}$$
Correct statement with $|\overrightarrow{AB}|$ and $|\overrightarrow{PB}|$ simplified as shown.

Either $|\overrightarrow{AB}| = \sqrt{9\lambda^2 + 90\lambda + 225}$ or

M1between \overrightarrow{AB} and \overrightarrow{PB} . **A**1

Attempts the dot product formula

 $\left| \frac{\overrightarrow{PB}}{\overrightarrow{PB}} \right| = \sqrt{9\lambda^2 + 90\lambda + 261}$ **B**1

$$\left\{\cos 45^{\circ}\right. = \left\{ \frac{1}{\sqrt{2}}\right. = \frac{140 + 20\lambda + 28\lambda + 4\lambda^{2} + 80 + 20\lambda + 16\lambda + 4\lambda^{2} + 5 + 5\lambda + \lambda + \lambda^{2}}{\sqrt{9\lambda^{2} + 90\lambda + 225}} \frac{1}{\sqrt{9\lambda^{2} + 90\lambda + 261}} \right\}$$

$$\left\{\cos 45^{\circ} = \right\} \frac{1}{\sqrt{2}} = \frac{9\lambda^{2} + 90\lambda + 225}{\sqrt{9\lambda^{2} + 90\lambda + 225} \sqrt{9\lambda^{2} + 90\lambda + 261}}$$
$$\frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)^{2}}{(9\lambda^{2} + 90\lambda + 225)(9\lambda^{2} + 90\lambda + 261)}$$
$$\frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)}$$

$$9\lambda^2 + 90\lambda + 261 = 2(9\lambda^2 + 90\lambda + 225) \Rightarrow 9\lambda^2 + 90\lambda + 189 = 0$$

$$\lambda^2 + 10\lambda + 21 = 0 \Rightarrow (\lambda + 3)(\lambda + 7) = 0$$
$$\lambda = -3, -7$$

Then apply final M1 A1 as in the original scheme. ... M1 A1

8. (b)

Way 0:

$$\overrightarrow{PA} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \text{ and direction vector of } l \text{ is } \mathbf{d} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
So, $|\overrightarrow{PA}| = 2 |\mathbf{d}|$ or $PA = 2 |\mathbf{d}|$

So,
$$|\overrightarrow{PA}| = 2 |\mathbf{d}|$$
 or $PA = 2 |\mathbf{d}|$

A correct statement relating these distances (and not vectors) M1 A1 B1

Apply final M1 A1 as in the original scheme. ... M1 A1

Note: $\overrightarrow{PA} = 2\mathbf{d}$ with no other creditable working is M0A0B0...

Note: $\overrightarrow{PA} = 2\mathbf{d}$, followed by $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ is M1A1B1M1 and the final A1 mark is for both sets of

correct coordinates.