Paper Reference(s)
6665/01

Edexcel GCE

Core Mathematics C3

Advanced Level

Thursday 14 June 2012 - Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C3), the paper reference (6665), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
There are 8 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. Express

$$
\frac{2(3 x+2)}{9 x^{2}-4}-\frac{2}{3 x+1}
$$

as a single fraction in its simplest form.
2.

$$
\mathrm{f}(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
x=\sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq-3 .
$$

The equation $x^{3}+3 x^{2}+4 x-12=0$ has a single root which is between 1 and 2.
(b) Use the iteration formula

$$
x_{n+1}=\sqrt{\left(\frac{4\left(3-x_{n}\right)}{\left(3+x_{n}\right)}\right)}, \quad n \geq 0
$$

with $x_{0}=1$ to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

The root of $\mathrm{f}(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=1.272$ to 3 decimal places.
3.

Figure 1
Figure 1 shows a sketch of the curve C which has equation

$$
y=\mathrm{e}^{x \sqrt{3}} \sin 3 x, \quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3} .
$$

(a) Find the x-coordinate of the turning point P on C, for which $x>0$.

Give your answer as a multiple of π.
(b) Find an equation of the normal to C at the point where $x=0$.
4.

Figure 2
Figure 2 shows part of the curve with equation $y=\mathrm{f}(x)$.
The curve passes through the points $P(-1.5,0)$ and $Q(0,5)$ as shown.
On separate diagrams, sketch the curve with equation
(a) $y=|f(x)|$
(b) $y=\mathrm{f}(|x|)$
(c) $y=2 \mathrm{f}(3 x)$

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
5. (a) Express $4 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec}^{2} \theta$ in terms of $\sin \theta$ and $\cos \theta$.
(b) Hence show that

$$
\begin{equation*}
4 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \tag{4}
\end{equation*}
$$

(c) Hence or otherwise solve, for $0<\theta<\pi$,

$$
4 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec}^{2} \theta=4
$$

giving your answers in terms of π.
6. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto \mathrm{e}^{x}+2, & x \in \mathbb{R}, \\
\mathrm{~g}: x \mapsto \ln x, & x>0 .
\end{array}
$$

(a) State the range of f .
(b) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(c) Find the exact value of x for which $f(2 x+3)=6$.
(d) Find f^{-1}, the inverse function of f , stating its domain.
(e) On the same axes sketch the curves with equation $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, giving the coordinates of all the points where the curves cross the axes.
7. (a) Differentiate with respect to x,
(i) $x^{\frac{1}{2}} \ln (3 x)$,
(ii) $\frac{1-10 x}{(2 x-1)^{5}}$, giving your answer in its simplest form.
(b) Given that $x=3 \tan 2 y$ find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
8.

$$
\mathrm{f}(x)=7 \cos 2 x-24 \sin 2 x
$$

Given that $\mathrm{f}(x)=R \cos (2 x+\alpha)$, where $R>0$ and $0<\alpha<90^{\circ}$,
(a) find the value of R and the value of α.
(b) Hence solve the equation

$$
7 \cos 2 x-24 \sin 2 x=12.5
$$

for $0 \leq x<180^{\circ}$, giving your answers to 1 decimal place.
(c) Express $14 \cos ^{2} x-48 \sin x \cos x$ in the form $a \cos 2 x+b \sin 2 x+c$, where a, b, and c are constants to be found.
(d) Hence, using your answers to parts (a) and (c), deduce the maximum value of

$$
14 \cos ^{2} x-48 \sin x \cos x
$$

END

Question Number	Scheme	Marks
1.	Eliminating the common factor of $(3 x+2)$ at any stage	At any stage
	$\frac{2(3 x+2)}{(3 x-2)(3 x+2)}=\frac{2}{3 x-2}$	
Use of a common denominator		
$\frac{2(3 x+2)(3 x+1)}{\left(9 x^{2}-4\right)(3 x+1)}-\frac{2\left(9 x^{2}-4\right)}{\left(9 x^{2}-4\right)(3 x+1)}$ or $\frac{2(3 x+1)}{(3 x-2)(3 x+1)}-\frac{2(3 x-2)}{(3 x+1)(3 x-2)}$	M1	B1
	$\frac{6}{(3 x-2)(3 x+1)}$ or $\frac{6}{9 x^{2}-3 x-2}$	A1

Notes

B1 For factorising $9 x^{2}-4=(3 x-2)(3 x+2)$ using difference of two squares. It can be awarded at any stage of the answer but it must be scored on E pen as the first mark
B1 For eliminating/cancelling out a factor of $(3 x+2)$ at any stage of the answer.
M1 For combining two fractions to form a single fraction with a common denominator. Allow slips on the numerator but at least one must have been adapted. Condone invisible brackets. Accept two separate fractions with the same denominator as shown in the mark scheme. Amongst possible (incorrect) options scoring method marks are

$$
\frac{2(3 x+2)}{\left(9 x^{2}-4\right)(3 x+1)}-\frac{2\left(9 x^{2}-4\right)}{\left(9 x^{2}-4\right)(3 x+1)} \quad \text { Only one numerator adapted, separate fractions }
$$

$\frac{2 \times 3 x+1-2 \times 3 x-2}{(3 x-2)(3 x+1)}$ Invisible brackets, single fraction
A1 $\frac{6}{(3 x-2)(3 x+1)}$
This is not a given answer so you can allow recovery from 'invisible' brackets.

Alternative method

$\frac{2(3 x+2)}{\left(9 x^{2}-4\right)}-\frac{2}{(3 x+1)}=\frac{2(3 x+2)(3 x+1)-2\left(9 x^{2}-4\right)}{\left(9 x^{2}-4\right)(3 x+1)}=\frac{18 x+12}{\left(9 x^{2}-4\right)(3 x+1)}$ has scored $0,0,1,0$ so far

$$
\begin{aligned}
& =\frac{6(3 x+2)}{(3 x+2)(3 x-2)(3 x+1)} \text { is now } 1,1,1,0 \\
& =\frac{6}{(3 x-2)(3 x+1)} \text { and now } 1,1,1,1
\end{aligned}
$$

Question Number	Scheme	Marks
2.	(a) $\begin{aligned} x^{3}+3 x^{2}+4 x-12=0 & \Rightarrow x^{3}+3 x^{2}=12-4 x \\ & \Rightarrow x^{2}(x+3)=12-4 x \\ & \Rightarrow x^{2}=\frac{12-4 x}{(x+3)} \Rightarrow x=\sqrt{\frac{4(3-x)}{(x+3)}} \end{aligned}$	M1 dM1A1* (3)
	(b) $x_{1}=1.41, \quad$ awrt $x_{2}=1.20 \quad x_{3}=1.31$	M1A1,A1 (3)
	(c) Choosing ($1.2715,1.2725$) or tighter containing root 1.271998323	M1
	$\mathrm{f}(1.2725)=(+) 0.00827 \ldots \quad \mathrm{f}(1.2715)=-0.00821 \ldots$.	M1
	Change of sign $\Rightarrow \alpha=1.272$	A1 (3) (9 marks)

Notes

(a) M1 Moves from $\mathrm{f}(x)=0$, which may be implied by subsequent working, to $x^{2}(x \pm 3)= \pm 12 \pm 4 x$ by separating terms and factorising in either order. No need to factorise rhs for this mark.
dM1 Divides by ' $(x+3)$ ' term to make x^{2} the subject, then takes square root. No need for rhs to be factorised at this stage
A1* CSO. This is a given solution. Do not allow sloppy algebra or notation with root on just numerator for instance. The 12-4x needs to have been factorised.
(b) Note that this appears B1,B1,B1 on EPEN

M1 An attempt to substitute $x_{0}=1$ into the iterative formula to calculate x_{1}.
This can be awarded for the sight of $\sqrt{\frac{4(3-1)}{(3+1)}}, \sqrt{\frac{8}{4}}, \sqrt{2}$ and even 1.4
A1 $\quad x_{1}=1.41$. The subscript is not important. Mark as the first value found, $\sqrt{2}$ is A0
A1 $\quad x_{2}=$ awrt $1.20 \quad x_{3}=$ awrt 1.31. Mark as the second and third values found. Condone 1.2 for x_{2}
(c) Note that this appears M1A1A1 on EPEN
M1 Choosing the interval (1.2715,1.2725) or tighter containing the root 1.271998323. Continued iteration is not allowed for this question and is M0
M1 Calculates $\mathrm{f}(1.2715)$ and $\mathrm{f}(1.2725)$, or the tighter interval with at least 1 correct to 1 sig fig rounded or truncated.
Accept $f(1.2715)=-0.0081$ sf rounded or truncated. Also accept $f(1.2715)=-0.012 \mathrm{dp}$
Accept $f(1.2725)=(+) 0.0081$ sf rounded or truncated. Also accept $f(1.2725)=(+) 0.012 d p$
A1 Both values correct (see above),
A valid reason; Accept change of sign, or $>0<0$, or $\mathrm{f}(1.2715) \times f(1.2725)<0$
And a (minimal) conclusion; Accept hence root or $\alpha=1.272$ or QED or

Alternative to (a) working backwards

2(a)

| $x=\sqrt{\frac{4(3-x)}{(x+3)}} \Rightarrow x^{2}=\frac{4(3-x)}{(x+3)} \Rightarrow x^{2}(x+3)=4(3-x)$ | |
| :--- | :--- | :--- |
| $x^{3}+3 x^{2}=12-4 x \Rightarrow x^{3}+3 x^{2}+4 x-12=0$ | M 1 |
| States that this is $\mathrm{f}(x)=0$ | dM 1 |
| A1* | |

Alternative starting with the given result and working backwards
M1 Square (both sides) and multiply by ($x+3$)
dM1 Expand brackets and collect terms on one side of the equation $=0$
A1 A statement to the effect that this is $\mathrm{f}(x)=0$

An acceptable answer to (c) with an example of a tighter interval

M1 Choosing the interval (1.2715, 1.2720). This contains the root 1.2719 (98323)
M1 Calculates $\mathrm{f}(1.2715)$ and $\mathrm{f}(1.2720)$, with at least 1 correct to 1 sig fig rounded or truncated.
Accept $f(1.2715)=-0.0081$ sf rounded or truncated $f(1.2715)=-0.012 \mathrm{dp}$ Accept $\mathrm{f}(1.2720)=(+) 0.000031$ sf rounded or $\mathrm{f}(1.2720)=(+) 0.00002$ truncated 1 sf
A1 Both values correct (see above),
A valid reason; Accept change of sign, or $>0<0$, or $\mathrm{f}(1.2715) \times \mathrm{f}(1.2720)<0$
And a (minimal) conclusion; Accept hence root or $\alpha=1.272$ or QED or

\boldsymbol{x}	$\mathbf{f}(\boldsymbol{x})$
1.2715	-0.00821362
1.2716	-0.00656564
1.2717	-0.00491752
1.2718	-0.00326927
1.2719	-0.00162088
1.2720	+0.00002765
1.2721	+0.00167631
1.2722	+0.00332511
1.2723	+0.00497405
1.2724	+0.00662312
1.2725	+0.00827233

An acceptable answer to (c) using $g(x)$ where $g(x)=\sqrt{\frac{4(3-x)}{(x+3)}}-x$
$2^{\text {nd }}$ M1 Calculates $\mathrm{g}(1.2715)$ and $\mathrm{g}(1.2725)$, or the tighter interval with at least 1 correct to 1 sig fig rounded or truncated.
$g(1.2715)=0.0007559$. Accept $g(1.2715)=$ awrt $(+) 0.00081$ sf rounded or awrt 0.0007 truncated. $g(1.2725)=-0.00076105$. Accept $g(1.2725)=$ awrt -0.0008 1sf rounded or awrt -0.0007 truncated.

(a) M1 Applies the product rule vu'+uv' to $e^{x \sqrt{3}} \sin 3 x$. If the rule is quoted it must be correct and there must have been some attempt to differentiate both terms. If the rule is not quoted (nor implied by their working, ie. terms are written out $\mathrm{u}=\ldots, \mathrm{u} \mathrm{u}^{\prime}=\ldots, \mathrm{v}=\ldots, \mathrm{v}^{\prime}=\ldots$. followed by their vu'+uv') only accept answers of the form $\frac{\mathrm{d} y}{\mathrm{~d} x}=A e^{x \sqrt{3}} \sin 3 x+e^{x \sqrt{3}} \times \pm B \cos 3 x$
A1 Correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{3} e^{x \sqrt{3}} \sin 3 x+3 e^{x \sqrt{3}} \cos 3 x$
M1 Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, factorises out or divides by $e^{x \sqrt{3}}$ producing an equation in $\sin 3 x$ and $\cos 3 x$
A1 Achieves either $\tan 3 x=-\sqrt{3}$ or $\tan 3 x=-\frac{3}{\sqrt{3}}$
M1 Correct order of arctan, followed by $\div 3$.
Accept $3 x=\frac{5 \pi}{3} \Rightarrow x=\frac{5 \pi}{9}$ or $3 x=\frac{-\pi}{3} \Rightarrow x=\frac{-\pi}{9}$ but not $x=\arctan \left(\frac{-\sqrt{3}}{3}\right)$
A1 CS0 $x=\frac{2 \pi}{9}$ Ignore extra solutions outside the range. Withhold mark for extra inside the range.
(b) B1 Sight of $\mathbf{3}$ for the gradient

M1 A full method for finding an equation of the normal.
Their tangent gradient m must be modified to $-\frac{1}{m}$ and used together with $(0,0)$.
$\mathrm{Eg}-\frac{1}{\text { their }{ }^{\prime} m^{\prime}}=\frac{y-0}{x-0}$ or equivalent is acceptable
A1 $y=-\frac{1}{3} x$ or any correct equivalent including $-\frac{1}{3}=\frac{y-0}{x-0}$.

Alternative in part (a) using the form $R \sin (3 x+\alpha)$ JUST LAST 3 MARKS

A1 Achieves either $(\sqrt{12}) \sin \left(3 x+\frac{\pi}{3}\right)=0$ or $(\sqrt{12}) \cos \left(3 x-\frac{\pi}{6}\right)=0$
M1 Correct order of arcsin or arcos, etc to produce a value of x
Eg accept $3 x+\frac{\pi}{3}=0$ or π or $2 \pi \Rightarrow x=\ldots$.
A1 Cao $x=\frac{2 \pi}{9}$ Ignore extra solutions outside the range. Withhold mark for extra inside the range.

Alternative to part (a) squaring both sides JUST LAST 3 MARKS

Question Number	Scheme	Marks
3.	$\begin{aligned} & \text { (a) } \frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{3} e^{x \sqrt{3}} \sin 3 x+3 e^{x \sqrt{3}} \cos 3 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad e^{x \sqrt{3}}(\sqrt{3} \sin 3 x+3 \cos 3 x)=0 \\ & \sqrt{3} \sin 3 x=-3 \cos 3 x \Rightarrow \cos ^{2}(3 x)=\frac{1}{4} \operatorname{or~sin}^{2}(3 x)=\frac{3}{4} \\ & x=\frac{1}{3} \operatorname{arcos}\left(\pm \sqrt{\frac{1}{4}}\right) \quad \text { oe } \end{aligned}$	M1A1
		M1
		A1
		M1
	$x=\frac{2 \pi}{9}$	A1

(a) Note that this appears as M1A1 on EPEN

B1 Shape (inc cusp) with graph in just quadrants 1 and 2. Do not be overly concerned about relative gradients, but the left hand section of the curve should not bend back beyond the cusp
B1 This is independent, and for the curve touching the x-axis at $(-1.5,0)$ and crossing the y-axis at $(0,5)$
(b) Note that this appears as M1A1 on EPEN

B1 For a U shaped curve symmetrical about the y-axis
B1 $(0,5)$ lies on the curve
(c) Note that this appears as M1B1B1 on EPEN
B1 Correct shape- do not be overly concerned about relative gradients. Look for a similar shape to $\mathrm{f}(x)$
B1 Curve crosses the y axis at $(0,10)$. The curve must appear in both quadrants 1 and 2
B1 Curve crosses the x axis at $(-0.5,0)$. The curve must appear in quadrants 3 and 2 .
In all parts accept the following for any co-ordinate. Using $(0,3)$ as an example, accept both $(3,0)$ or 3 written on the y axis (as long as the curve passes through the point)
Special case with (a) and (b) completely correct but the wrong way around mark - $\mathrm{SC}(\mathbf{a}) \mathbf{0 , 1} \mathrm{SC}(\mathrm{b}) \mathbf{0 , 1}$ Otherwise follow scheme

Question Number	Scheme	Marks
5.	$\text { (a) } \begin{aligned} 4 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec}^{2} \theta & =\frac{4}{\sin ^{2} 2 \theta}-\frac{1}{\sin ^{2} \theta} \\ = & \frac{4}{(2 \sin \theta \cos \theta)^{2}}-\frac{1}{\sin ^{2} \theta} \end{aligned}$	B1 B1
	(b) $\begin{aligned} \frac{4}{(2 \sin \theta \cos \theta)^{2}}-\frac{1}{\sin ^{2} \theta} & =\frac{4}{4 \sin ^{2} \theta \cos ^{2} \theta}-\frac{1}{\sin ^{2} \theta} \\ & =\frac{1}{\sin ^{2} \theta \cos ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta} \end{aligned}$	M1
	Using $1-\cos ^{2} \theta=\sin ^{2} \theta$ $\begin{aligned} & =\frac{\sin ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta} \\ & =\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta \end{aligned}$	M1 M1A1* (4)
	(c) $\sec ^{2} \theta=4 \Rightarrow \sec \theta= \pm 2 \Rightarrow \cos \theta= \pm \frac{1}{2}$	M1
	$\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$	$\mathrm{A} 1, \mathrm{~A} 1$
		$\begin{equation*} \mathbf{(9 ~ m a r k s) ~}^{(3)} \tag{3} \end{equation*}$

Note (a) and (b) can be scored together
(a) B1 One term correct. Eg. writes $4 \operatorname{cosec}^{2} 2 \theta$ as $\frac{4}{(2 \sin \theta \cos \theta)^{2}}$ or $\operatorname{cosec}^{2} \theta$ as $\frac{1}{\sin ^{2} \theta}$. Accept terms like $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta=1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$. The question merely asks for an expression in $\sin \theta$ and $\cos \theta$
B1 A fully correct expression in $\sin \theta$ and $\cos \theta$. Eg. $\frac{4}{(2 \sin \theta \cos \theta)^{2}}-\frac{1}{\sin ^{2} \theta}$ Accept equivalents Allow a different variable say x 's instead of θ 's but do not allow mixed units.
b) M1 Attempts to combine their expression in $\sin \theta$ and $\cos \theta$ using a common denominator. The terms can be separate but the denominator must be correct and one of the numerators must have been adapted
M1 Attempts to form a 'single' term on the numerator by using the identity $1-\cos ^{2} \theta=\sin ^{2} \theta$
M1 Cancels correctly by $\sin ^{2} \theta$ terms and replaces $\frac{1}{\cos ^{2} \theta}$ with $\sec ^{2} \theta$
A1* Cso. This is a given answer. All aspects must be correct

IF IN ANY DOUBT SEND TO REVIEW OR CONSULT YOUR TEAM LEADER

c) M1 For $\sec ^{2} \theta=4$ leading to a solution of $\cos \theta$ by taking the root and inverting in either order .

Similarly accept $\tan ^{2} \theta=3, \sin ^{2} \theta=\frac{3}{4}$ leading to solutions of $\tan \theta, \sin \theta$. Also accept $\cos 2 \theta=-\frac{1}{2}$
A1 Obtains one correct answer usually $\theta=\frac{\pi}{3}$ Do not accept decimal answers or degrees
A1 Obtains both correct answers. $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$ Do not award if there are extra solutions inside the range. Ignore solutions outside the range.

(a) B1 Range of $\mathrm{f}(x)>2$. Accept $y>2,(2, \infty), \mathrm{f}>2$, as well as 'range is the set of numbers bigger than 2 ' but don't accept $x>2$
(b) M1 For applying the correct order of operations. Look for $e^{\ln x}+2$. Note that $\ln e^{x}+2$ is M0

A1 Simplifies $e^{\ln x}+2$ to $x+2$. Just the answer is acceptable for both marks
(c) M1 Starts with $e^{2 x+3}+2=6$ and proceeds to $e^{2 x+3}=\ldots$

A1 $e^{2 x+3}=4$
M1 Takes \ln 's both sides, $2 x+3=\ln$.. and proceeds to $x=\ldots$.
A1 $x=\frac{\ln 4-3}{2}$ oe. eg $\ln 2-\frac{3}{2}$ Remember to isw any incorrect working after a correct answer
(d) Note that this is marked M1A1A1 on EPEN

M1 Starts with $y=e^{x}+2$ or $x=e^{y}+2$ and attempts to change the subject.
All \ln work must be correct. The 2 must be dealt with first.
Eg. $y=e^{x}+2 \Rightarrow \ln y=x+\ln 2 \Rightarrow x=\ln y-\ln 2$ is M0
A1 $\quad \mathrm{f}^{-1}(x)=\ln (x-2) \quad$ or $\quad \mathrm{y}=\ln (x-2)$ or $\quad \mathrm{y}=\ln |x-2|$ There must be some form of bracket
B1ft Either $x>2$, or follow through on their answer to part (a), provided that it wasn't $y \in \mathfrak{R}$ Do not accept $\mathrm{y}>2$ or $\mathrm{f}^{-1}(x)>2$.
(e) B1 Shape for $\mathrm{y}=\mathrm{e}^{x}$. The graph should only lie in quadrants 1 and 2. It should start out with a gradient that is approx. 0 above the x axis in quadrant 2 and increase in gradient as it moves into quadrant 1 . You should not see a minimum point on the graph.
B1 $(0,3)$ lies on the curve. Accept 3 written on the y axis as long as the point lies on the curve
B1 Shape for $y=\ln x$. The graph should only lie in quadrants 4 and 1. It should start out with gradient that is approx. infinite to the right of the y axis in quadrant 4 and decrease in gradient as it moves into quadrant 1 . You should not see a maximum point. Also with hold this mark if it intersects $\mathrm{y}=\mathrm{e}^{x}$
B1 $(3,0)$ lies on the curve. Accept 3 written on the x axis as long as the point lies on the curve

Condone lack of labels in this part

Examples

(

Note that this is marked B1M1A1 on EPEN

(a)(i) M1 Attempts to differentiate $\ln (3 x)$ to $\frac{B}{x}$. Note that $\frac{1}{3 x}$ is fine.

M1 Attempts the product rule for $x^{\frac{1}{2}} \ln (3 x)$. If the rule is quoted it must be correct. There must have been some attempt to differentiate both terms.
If the rule is not quoted nor implied from their stating of $u, u^{\prime}, v, v^{\prime}$ and their subsequent
expression, only accept answers of the form
$\ln (3 x) \times A x^{-\frac{1}{2}}+x^{\frac{1}{2}} \times \frac{B}{x}, \quad A, B>0$
A1 Any correct (un simplified) form of the answer. Remember to isw any incorrect further work $\frac{d}{d x}\left(x^{\frac{1}{2}} \ln (3 x)\right)=\ln (3 x) \times \frac{1}{2} x^{-\frac{1}{2}}+x^{\frac{1}{2}} \times \frac{3}{3 x}=\left(\frac{\ln (3 x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)=x^{-\frac{1}{2}}\left(\frac{1}{2} \ln 3 x+1\right)$
Note that this part does not require the answer to be in its simplest form
(ii) M1 Applies the quotient rule, a version of which appears in the formula booklet. If the formula is quoted it must be correct. There must have been an attempt to differentiate both terms. If the formula is not quoted nor implied from their stating of $u, u^{\prime}, v, v^{\prime}$ and their subsequent expression, only accept answers of the form

$$
\frac{(2 x-1)^{5} \times \pm 10-(1-10 x) \times C(2 x-1)^{4}}{(2 x-1)^{10 \text { or } 7 \text { or } 25}}
$$

A1 Any un simplified form of the answer. $\operatorname{Eg} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x-1)^{5} \times-10-(1-10 x) \times 5(2 x-1)^{4} \times 2}{\left((2 x-1)^{5}\right)^{2}}$
A1 Cao. It must be simplified as required in the question $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{80 x}{(2 x-1)^{6}}$
(b) M1 Knows that $3 \tan 2 y$ differentiates to $C \sec ^{2} 2 y$. The lhs can be ignored for this mark. If they write $3 \tan 2 y$ as $\frac{3 \sin 2 y}{\cos 2 y}$ this mark is awarded for a correct attempt of the quotient rule.
A1 Writes down $\frac{\mathrm{d} x}{\mathrm{~d} y}=6 \sec ^{2} 2 y$ or implicitly to get $1=6 \sec ^{2} 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ Accept from the quotient rule $\frac{6}{\cos ^{2} 2 y}$ or even $\frac{\cos 2 y \times 6 \cos 2 y-3 \sin 2 y \times-2 \sin 2 y}{\cos ^{2} 2 y}$
M1 An attempt to invert 'their' $\frac{\mathrm{d} x}{\mathrm{~d} y}$ to reach $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(y)$, or changes the subject of their implicit differential to achieve a similar result $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(y)$
M1 Replaces an expression for $\sec ^{2} 2 y$ in their $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with x by attempting to use $\sec ^{2} 2 y=1+\tan ^{2} 2 y$. Alternatively, replaces an expression for y in $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with $\frac{1}{2} \arctan \left(\frac{x}{3}\right)$

A1 Any correct form of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $x . \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{6\left(1+\left(\frac{x}{3}\right)^{2}\right)} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{18+2 x^{2}}$ or $\frac{1}{6 \sec ^{2}\left(\arctan \left(\frac{x}{3}\right)\right)}$

Question Number	Scheme	Marks
7.	(a)(ii) Alt using the product rule Writes $\frac{1-10 x}{(2 x-1)^{5}}$ as $(1-10 x)(2 x-1)^{-5}$ and applies vu' + uv'. See (a)(i) for rules on how to apply $(2 x-1)^{-5} \times-10+(1-10 x) \times-5(2 x-1)^{-6} \times 2$	M1A1
Simplifies as main scheme to $80 x(2 x-1)^{-6}$ or equivalent		
(b) Alternative using arctan. They must attempt to differentiate		
to score any marks. Technically this is M1A1M1A2		
Rearrange $x=3$ tan $2 y$ to $y=\frac{1}{2} \arctan \left(\frac{x}{3}\right)$ and attempt to differentiate		
Differentiates to a form $\frac{A}{1+\left(\frac{x}{3}\right)^{2}},=\frac{1}{2} \times \frac{1}{\left(1+\left(\frac{x}{3}\right)^{2}\right)} \times \frac{1}{3}$ or $\frac{1}{6\left(1+\left(\frac{x}{3}\right)^{2}\right)}$ oe	M1A1	

(a) B1 Accept 25 , awrt $25.0, \sqrt{ } 625$. Condone ± 25

M1 For $\tan \alpha= \pm \frac{24}{7} \quad \tan \alpha= \pm \frac{7}{24} \sin \alpha= \pm \frac{24}{\text { their } R}, \cos \alpha= \pm \frac{7}{\text { their } R}$
A1 $\quad \alpha=($ awrt $) 73.7^{0}$. The answer 1.287 (radians) is A0
(b) M1 For using part (a) and dividing by their R to reach $\cos (2 x+$ their $\alpha)=\frac{12.5}{\text { their } R}$

A1 Achieving $2 x+$ their $\alpha=60^{(0)}$. This can be implied by $113.1^{(0)} / 113.2^{(0)}$ or $173.1^{(0)} / 173.2{ }^{(0)}$ or $-6.8^{(0)} /-6.85^{(0)} /-6.9^{(0)}$
M1 Finding a secondary value of x from their principal value. A correct answer will imply this mark Look for $\frac{360 \pm \text { 'their' principal value } \pm^{\prime} \text { their' } \alpha}{2}$
A1 $x=$ awrt $113.1^{0} / 113.2^{0}$ OR $173.1^{0} / 173.2^{0}$.
A1 $x=a w r t 113.1^{\circ}$ AND 173.1^{0}. Ignore solutions outside of range. Penalise this mark for extra solutions inside the range
(c) M1 Attempts to use $\cos 2 x=2 \cos ^{2} x-1$ and $\sin 2 x=2 \sin x \cos x$ in expression.
Allow slips in sign on the $\cos 2 x$ term. So accept $2 \cos ^{2} x= \pm \cos 2 x \pm 1$
A1 $\mathrm{Cao}=7 \cos 2 x-24 \sin 2 x+7$. The order of terms is not important. Also accept $\mathrm{a}=7, \mathrm{~b}=-24, \mathrm{c}=7$
(d) M1 This mark is scored for adding their R to their c

A1 cao 32

Radian solutions- they will lose the first time it occurs (usually in a with 1.287 radians) Part b will then be marked as follows

(b) M1 For using part (a) and dividing by their R to reach $\cos (2 x+$ their $\alpha)=\frac{12.5}{\text { their } R}$

A1 The correct principal value of $\frac{\pi}{3}$ or awrt 1.05 radians. Accept $60^{(0)}$ This can be implied by awrt -0.12 radians or awrt or 1.97 radians or awrt 3.02 radians

M1 Finding a secondary value of x from their principal value. A correct answer will imply this mark Look for $\frac{2 \pi \pm \text { 'their' principal value } \pm \text { 'their' } \alpha}{2}$ Do not allow mixed units.
A1 $x=$ awrt 1.97 OR 3.02.
A1 $x=a w r t$ 1.97 AND 3.02. Ignore solutions outside of range. Penalise this mark for extra solutions inside the range

