Edexcel GCE

Core Mathematics C3

Advanced Level

Wednesday 20 January 2010 - Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink or Green)

Items included with question papers

Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation or integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C3), the paper reference (6665), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
The marks for the parts of questions are shown in round brackets, e.g. (2)
There are 9 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. Express

$$
\frac{x+1}{3 x^{2}-3}-\frac{1}{3 x+1}
$$

as a single fraction in its simplest form.
2.

$$
\mathrm{f}(x)=x^{3}+2 x^{2}-3 x-11
$$

(a) Show that $\mathrm{f}(x)=0$ can be rearranged as

$$
x=\sqrt{\left(\frac{3 x+11}{x+2}\right)}, \quad x \neq-2 .
$$

The equation $\mathrm{f}(x)=0$ has one positive root α.
The iterative formula $x_{n+1}=\sqrt{\left(\frac{3 x_{n}+11}{x_{n}+2}\right)}$ is used to find an approximation to α.
(b) Taking $x_{1}=0$, find, to 3 decimal places, the values of x_{2}, x_{3} and x_{4}.
(c) Show that $\alpha=2.057$ correct to 3 decimal places.
3. (a) Express $5 \cos x-3 \sin x$ in the form $R \cos (x+\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
(b) Hence, or otherwise, solve the equation

$$
5 \cos x-3 \sin x=4
$$

for $0 \leq x<2 \pi$, giving your answers to 2 decimal places.
4. (i) Given that $y=\frac{\ln \left(x^{2}+1\right)}{x}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Given that $x=\tan y$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$.
5. Sketch the graph of $y=\ln |x|$, stating the coordinates of any points of intersection with the axes.
6.

Figure 1
Figure 1 shows a sketch of the graph of $y=\mathrm{f}(x)$.
The graph intersects the y-axis at the point $(0,1)$ and the point $A(2,3)$ is the maximum turning point.

Sketch, on separate axes, the graphs of
(i) $y=\mathrm{f}(-x)+1$,
(ii) $y=\mathrm{f}(x+2)+3$,
(iii) $y=2 \mathrm{f}(2 x)$.

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed.
7. (a) By writing $\sec x$ as $\frac{1}{\cos x}$, show that $\frac{\mathrm{d}(\sec x)}{\mathrm{d} x}=\sec x \tan x$.

Given that $y=\mathrm{e}^{2 x} \sec 3 x$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The curve with equation $y=\mathrm{e}^{2 x} \sec 3 x,-\frac{\pi}{6}<x<\frac{\pi}{6}$, has a minimum turning point at (a, b).
(c) Find the values of the constants a and b, giving your answers to 3 significant figures.
(4)
8. Solve

$$
\operatorname{cosec}^{2} 2 x-\cot 2 x=1
$$

for $0 \leq x \leq 180^{\circ}$.
9. (i) Find the exact solutions to the equations
(a) $\ln (3 x-7)=5$,
(b) $3^{x} \mathrm{e}^{7 x+2}=15$.
(ii) The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}(x)=\mathrm{e}^{2 x}+3, & x \in \mathbb{R}, \\
\mathrm{~g}(x)=\ln (x-1), & x \in \mathbb{R}, \quad x>1 .
\end{array}
$$

(a) Find f^{-1} and state its domain.
(b) Find fg and state its range.

J anuary 2010
6665 Core Mathematics C3
Mark Scheme

Part (b): If there are any EXTRA solutions inside the range $0 \leq x<2 \pi$, then withhold the final accuracy mark if the candidate would otherwise score all 5 marks. Also ignore EXTRA solutions outside the range $0 \leq x<2 \pi$.

Question Number	Scheme		Marks
Q5	$y=\ln \|x\|$		
		Right-hand branch in quadrants 4 and 1. Correct shape.	B1
		Left-hand branch in quadrants 2 and 3. Correct shape.	B1
		Completely correct sketch and both $(-1,\{0\})$ and $(1,\{0\})$	B1
			(3)
			[3]

Part (c): If there are any EXTRA solutions for x (or a) inside the range $-\frac{\pi}{6}<x<\frac{\pi}{6}$, ie. $-0.524<x<0.524$ or ANY EXTRA solutions for y (or b), (for these values of x) then withhold the final accuracy mark.
Also ignore EXTRA solutions outside the range $-\frac{\pi}{6}<x<\frac{\pi}{6}$, ie. $-0.524<x<0.524$.

Question Number	Scheme		Marks
Q8	$\operatorname{cosec}^{2} 2 x-\cot 2 x=1, \quad($ eqn $*) \quad 0 \leq x \leq 180^{\circ}$		
	Using $\operatorname{cosec}^{2} 2 x=1+\cot ^{2} 2 x$ gives $1+\cot ^{2} 2 x-\cot 2 x=1$	Writing down or using $\operatorname{cosec}^{2} 2 x= \pm 1 \pm \cot ^{2} 2 x$ or $\operatorname{cosec}^{2} \theta= \pm 1 \pm \cot ^{2} \theta$.	M1
	$\underline{\cot ^{2} 2 x-\cot 2 x}=0 \quad$ or $\quad \cot ^{2} 2 x=\cot 2 x$	For either $\left.\frac{\cot ^{2} 2 x-\cot 2 x}{} \begin{array}{r}\text { or } \cot ^{2} 2 x=0 \\ \text { a }\end{array}\right\}$	A1
	$\cot 2 x(\cot 2 x-1)=0 \quad \text { or } \quad \cot 2 x=1$$\cot 2 x=0 \text { or } \cot 2 x=1$	Attempt to factorise or solve a quadratic (See rules for factorising quadratics) or cancelling out $\cot 2 x$ from both sides.	dM1
		Both $\cot 2 x=0$ and $\cot 2 x=1$.	A1
	$\cot 2 x=0 \Rightarrow(\tan 2 x \rightarrow \infty) \Rightarrow 2 x=90,270$		
	$\Rightarrow x=45,135$ $\cot 2 x=1 \Rightarrow \tan 2 x=1 \Rightarrow 2 x=45,225$	Candidate attempts to divide at least one of their principal angles by 2 .	ddM1
	Overall, $x=\{22.5,45,112.5,135\}$	Both $x=22.5$ and $x=112.5$	A1
		Both $x=45$ and $x=135$	B1
			[7]

If there are any EXTRA solutions inside the range $0 \leq x \leq 180^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final accuracy mark (the sixth mark in this question). Also ignore EXTRA solutions outside the range $0 \leq x \leq 180^{\circ}$.

Question Number		Scheme	Marks
Q9 (i)(a)	$\ln (3 x-7)=5$		
	$\mathrm{e}^{\ln (3 x-7)}=e^{5}$	Takes e of both sides of the equation. This can be implied by $3 x-7=e^{5}$.	M1
		Then rearranges to make x the subject.	dM1
	$3 x-7=\mathrm{e}^{5} \Rightarrow x=\frac{e^{5}+7}{3}\{=51.804 \ldots\}$	Exact answer of $\frac{\mathrm{e}^{5}+7}{3}$.	A1
			(3)
	$3^{x} e^{7 x+2}=15$		
	$\ln \left(3^{x} \mathrm{e}^{7 x+2}\right)=\ln 15$	Takes \ln (or logs) of both sides of the equation.	M1
	$\ln 3^{x}+\ln \mathrm{e}^{7 \times+2}=\ln 15$	Applies the addition law of logarithms.	M1
	$x \ln 3+7 x+2=\ln 15$	$x \ln 3+7 x+2=\ln 15$	Al oe
	$x(\ln 3+7)=-2+\ln 15$	Factorising out at least two x terms on one side and collecting number terms on the other side.	ddM1
	$x=\frac{-2+\ln 15}{7+\ln 3}\{=0.0874 \ldots\}$	Exact answer of $\frac{-2+\ln 15}{7+\ln 3}$	Al oe
(ii) (a)	$\mathrm{f}(\mathrm{x})=\mathrm{e}^{2 \mathrm{x}}+3, x \in \square$		(5)
	$y=\mathrm{e}^{2 x}+3 \Rightarrow y-3=\mathrm{e}^{2 x}$	Attempt to make x (or swapped y) the subject	M1
	$\Rightarrow \ln (y-3)=2 x$	Makes $\mathrm{e}^{2 x}$ the subject and	M1
	$\Rightarrow \frac{1}{2} \ln (y-3)=x$	takes \ln of both sides	M1
	Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x-3)}$	$\frac{1}{2} \ln (x-3)$ or $\ln \sqrt{(x-3)}$ or $\mathrm{f}^{-1}(y)=\frac{1}{2} \ln (y-3)$ (see appendix)	A1 cao
	$\mathrm{f}^{-1}(x)$: Domain: $\underline{x>3}$ or $(3, \infty)$	Either $\underline{x>3}$ or $\underline{(3, \infty)}$ or Domain >3.	B1
	$\mathrm{g}(x)=\ln (x-1), x \in \square, x>1$		
	$\mathrm{fg}(x)=\mathrm{e}^{2 \ln (x-1)}+3 \quad\left\{=(x-1)^{2}+3\right\}$	An attempt to put function g into function f . $\mathrm{e}^{2 \ln (x-1)}+3$ or $(x-1)^{2}+3$ or $x^{2}-2 x+4$.	M1 Al isw
	$\mathrm{fg}(x)$: Range: $\underline{y>3}$ or $\underline{(3, \infty)}$	Either $\underline{y>3}$ or $\underline{(3, \infty)}$ or Range >3 or $\underline{\operatorname{fg}(x)>3}$.	B1
			(3)
			[15]

