| Write your name here                            |               |                  |
|-------------------------------------------------|---------------|------------------|
| Surname                                         | Other na      | mes              |
| Pearson<br>Edexcel GCE                          | Centre Number | Candidate Number |
| Core Mat<br>Advanced Subsidi                    |               | s C2             |
|                                                 |               | Paper Reference  |
| Wednesday 25 May 2016<br>Time: 1 hour 30 minute |               | 6664/01          |

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

# Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

# Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
   use this as a guide as to how much time to spend on each question.

### Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

| 1. | A geometric series has first term <i>a</i> and common ratio $r = \frac{3}{4}$ .                                |                 |
|----|----------------------------------------------------------------------------------------------------------------|-----------------|
|    | The sum of the first 4 terms of this series is 175.                                                            |                 |
|    | (a) Show that $a = 64$ .                                                                                       | (2)             |
|    | (b) Find the sum to infinity of the series.                                                                    | (2)             |
|    | (c) Find the difference between the 9th and 10th terms of the series.<br>Give your answer to 3 decimal places. |                 |
|    |                                                                                                                | (3)             |
|    |                                                                                                                | (Total 7 marks) |

## 2. The curve *C* has equation

$$y = 8 - 2^{x-1}, \qquad 0 \le x \le 4.$$

(a) Complete the table below with the value of y corresponding to x = 1

| x | 0   | 1 | 2 | 3 | 4 |
|---|-----|---|---|---|---|
| у | 7.5 |   | 6 | 4 | 0 |

(1)

(3)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for  $\int_{0}^{4} (8-2^{x-1}) dx$ .

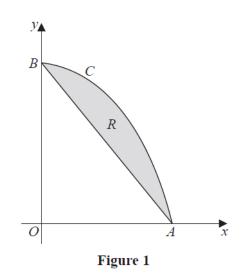
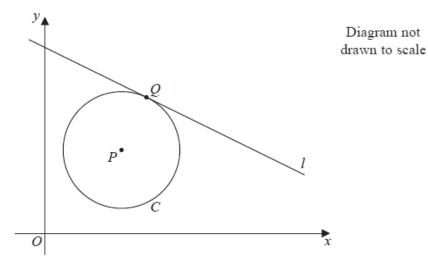



Figure 1 shows a sketch of the curve *C* with equation  $y = 8 - 2^{x-1}$ ,  $0 \le x \le 4$ .


The curve C meets the x-axis at the point A and meets the y-axis at the point B.

The region R, shown shaded in Figure 1, is bounded by the curve C and the straight line through A and B.

(c) Use your answer to part (b) to find an approximate value for the area of R.

(2)

(Total 6 marks)





The circle C has centre P(7, 8) and passes through the point Q(10, 13), as shown in Figure 2.

(a) Find the length PQ, giving your answer as an exact value.

(2)

(2)

(b) Hence write down an equation for C.

The line *l* is a tangent to *C* at the point *Q*, as shown in Figure 2.

(c) Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

## (Total 8 marks)

4.

# $f(x) = 6x^3 + 13x^2 - 4$

| (Total 8                                                                                   | marks) |
|--------------------------------------------------------------------------------------------|--------|
| (c) Factorise $f(x)$ completely.                                                           | (4)    |
| (b) Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$ .                  | (2)    |
| (b) Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$ .                  | (2)    |
| (a) Use the remainder theorem to find the remainder when $f(x)$ is divided by $(2x + 3)$ . |        |

5. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(2-9x)^4$$
,

giving each term in its simplest form.

 $f(x) = (1 + kx)(2 - 9x)^4$ , where k is a constant.

The expansion, in ascending powers of x, of f(x) up to and including the term in  $x^2$  is

$$A - 232x + Bx^2,$$

where A and B are constants.

(b) Write down the value of A.

(c) Find the value of k.

(d) Hence find the value of B.

(2)

(1)

(2)

6. (i) Solve, for  $-\pi < \theta \le \pi$ ,

$$1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0,$$

giving your answers in terms of  $\pi$ .

(ii) Solve, for  $0 \le x < 360^\circ$ ,

 $4\cos^2 x + 7\sin x - 2 = 0,$ 

giving your answers to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

(3)

### (Total 9 marks)

(4)

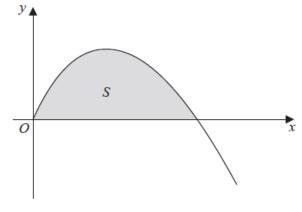





Figure 3 shows a sketch of part of the curve with equation

$$y = 3x - x^{\frac{3}{2}} \qquad x \ge 0 \,.$$

The finite region *S*, bounded by the *x*-axis and the curve, is shown shaded in Figure 3.

(a) Find

$$\int \left(3x - x^{\frac{3}{2}}\right) \mathrm{d}x \,. \tag{3}$$

(*b*) Hence find the area of *S*.

(3)

(Total 6 marks)

8 (i) Given that

$$\log_3(3b+1) - \log_3(a-2) = -1, \qquad a > 2,$$

express b in terms of a.

(ii) Solve the equation

$$2^{2x+5} - 7(2^x) = 0,$$

giving your answer to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(4)

(3)

## (Total 7 marks)

6

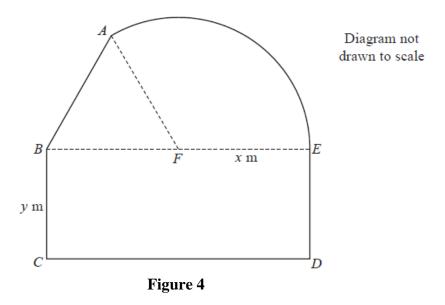



Figure 4 shows a plan view of a sheep enclosure.

The enclosure *ABCDEA*, as shown in Figure 4, consists of a rectangle *BCDE* joined to an equilateral triangle *BFA* and a sector *FEA* of a circle with radius x metres and centre F.

The points *B*, *F* and *E* lie on a straight line with FE = x metres and  $10 \le x \le 25$ .

(a) Find, in m<sup>2</sup>, the exact area of the sector *FEA*, giving your answer in terms of x, in its simplest form.

Given that BC = y metres, where y > 0, and the area of the enclosure is 1000 m<sup>2</sup>,

(*b*) show that

$$y = \frac{500}{x} - \frac{x}{24} \left( 4\pi + 3\sqrt{3} \right).$$
(3)

(c) Hence show that the perimeter P metres of the enclosure is given by

$$P = \frac{1000}{x} + \frac{x}{12} \left( 4\pi + 36 - 3\sqrt{3} \right).$$
(3)

(d) Use calculus to find the minimum value of P, giving your answer to the nearest metre.

(5)

(e) Justify, by further differentiation, that the value of P you have found is a minimum.

(2)

### (Total 15 marks)

### **TOTAL FOR PAPER: 75 MARKS**

**BLANK PAGE** 

| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                                                                | Marks              |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1.                  | $r = \frac{3}{4}, S_4 = 175$                                                                                                                                                                                                                                                                                                          |                    |
| (a)<br>Way 1        | $\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-\frac{3}{4}^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} $ Substituting $r = \frac{3}{4} \text{ or } 0.75 \text{ and } n = 4$<br>into the formula for $S_n$                                          | M1                 |
|                     | $175 = \frac{a\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \implies a = \frac{175\left(1 - \frac{3}{4}\right)}{\left(1 - \left(\frac{3}{4}\right)^4\right)}  \left\{ \Rightarrow a = \frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow \right\} \underbrace{a = 64}^* $ Correct proof      | A1*                |
| (a)<br>Way 2        | $a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3 \qquad \qquad a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3$                                                                                                                                   | [ <b>2</b> ]<br>M1 |
|                     | $\frac{175}{64}a = 175 \left( \Rightarrow a = \frac{175}{\left(\frac{175}{64}\right)} \right) \Rightarrow \underline{a = 64}^{*}$ or 2.734375 <i>a</i> =175 $\Rightarrow \underline{a = 64}$                                                                                                                                          | A1*                |
|                     |                                                                                                                                                                                                                                                                                                                                       | [2]                |
| (a)<br><b>Way 3</b> | $\{S_4 = \} \frac{64\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - \frac{3}{4}^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - 0.75^4\right)}{1 - 0.75} \qquad \qquad \text{Applying the formula for } S_n \text{ with } r = \frac{3}{4}, n = 4 \text{ and } a \text{ as } 64.$ | M1                 |
|                     | = 175 so $a = 64^*$ Obtains 175 with no errors seen and concludes $a = 64^*$ .                                                                                                                                                                                                                                                        | A1*<br>[2]         |
| (b)                 | $\{S_{\infty}\} = \frac{64}{\left(1 - \frac{3}{4}\right)}; = 256 \qquad S_{\infty} = \frac{(\text{their } a)}{1 - \frac{3}{4}} \text{ or } \frac{64}{1 - \frac{3}{4}}$                                                                                                                                                                | M1;                |
|                     | (4) 256                                                                                                                                                                                                                                                                                                                               | Alcao              |
| (c)                 | Writes down either " $64"\left(\frac{3}{4}\right)^8$ or awrt 6.4 or<br>$\{D = T_9 - T_{10} = \} 64\left(\frac{3}{4}\right)^8 - 64\left(\frac{3}{4}\right)^9$ " $64"\left(\frac{3}{4}\right)^9$ or awrt 4.8, using $a = 64$ or their $a$                                                                                               | [2]<br>M1          |
|                     | A correct expression for the difference<br>(i.e. $\pm (T_9 - T_{10})$ ) using $a = 64$ or their $a$ .                                                                                                                                                                                                                                 | dM1                |
|                     | $\left\{ = 64 \left(\frac{3}{4}\right)^8 \left(\frac{1}{4}\right) = 1.6018066 \right\} = \underline{1.602} (3  \text{dp}) $ 1.602 or -1.602                                                                                                                                                                                           | A1 cao             |
|                     |                                                                                                                                                                                                                                                                                                                                       | [3]                |
|                     |                                                                                                                                                                                                                                                                                                                                       | 7                  |

|               |         | Question 1 Notes                                                                                                                                                                                                                                                                        |
|---------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1.</b> (a) |         | Allow invisible brackets around fractions throughout all parts of this question.                                                                                                                                                                                                        |
|               | M1      | There are three possible methods as described above.                                                                                                                                                                                                                                    |
|               | A1      | Note that this is a "show that" question with a printed answer.<br>In <b>Way 1</b> this mark <b>usually</b> requires $a = p/q$ where p and q may be unsimplified brackets from the formula (or could be 11200/175 for example) as an intermediate step before the conclusion $a = 64$ . |
|               |         | Exceptions include $a = 175/4 * 256/175$ i.e. multiplication by reciprocal rather than division or 175 = $175a/64$ followed by the obvious $a = 64$ These also get A1                                                                                                                   |
|               |         | In "reverse" methods such as <b>Way 3</b> we need a conclusion "so $a = 64$ " or some implication that                                                                                                                                                                                  |
|               |         | their argument is reversible. Also a conclusion can be implied from a <u>preamble</u> , eg: "If I assume $a = 64$ then find $S = 175$ as given this implies $a = 64$ as required"                                                                                                       |
|               |         | This is a show that question and there should be no loss of accuracy.                                                                                                                                                                                                                   |
|               |         | In all the methods <b>if</b> decimals are used there should <b>not be rounding</b> .<br>If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer.                                                                                                     |
|               |         | 64(1-0.31640625) or 43.75 are each correct – if they are rounded then treat this as incorrect                                                                                                                                                                                           |
|               |         | e.g. Way 3: "43.75/0.25 = 175 so $a = 64$ is A1" but "43/0.25 = 175 so $a = 64$ is A0" and "44/0.25 = 175 so $a = 64$ is A0"                                                                                                                                                            |
|               |         | Yet another variant on Way 3: take a=64 then find the next 3 terms as 48, 36, 27 then                                                                                                                                                                                                   |
|               |         | add $64+48+36+27$ to get 175. Again need conclusion that $a = 64$ or some implication that their                                                                                                                                                                                        |
|               |         | argument is reversible. Otherwise M1 A0                                                                                                                                                                                                                                                 |
| (b)           | M1      | $S_{\infty} = \frac{64}{1-\frac{3}{4}}$ or $\frac{(\text{their } a \text{ found in part } (a))}{1-\frac{3}{4}}$                                                                                                                                                                         |
|               | A1      | $1 - \frac{1}{4}$ $1 - \frac{1}{4}$<br>256 cao                                                                                                                                                                                                                                          |
|               | АІ      | 250 040                                                                                                                                                                                                                                                                                 |
| (c)           | NB      | Using <b>Sum of 10 terms</b> minus <b>Sum of 9 terms</b> is NOT a misread Scores <b>M0M0A0</b><br>$(3)^8$ $(3)^9$                                                                                                                                                                       |
|               | M1      | Can be <b>implied.</b> Writes down either $64\left(\frac{3}{4}\right)^8$ or $64\left(\frac{3}{4}\right)^9$ ,                                                                                                                                                                            |
|               |         | using $a = 64$ (or their <i>a</i> found in part (a)).                                                                                                                                                                                                                                   |
|               | Note    | Ignore candidate's labelling of terms.                                                                                                                                                                                                                                                  |
|               | Note    | $64\left(\frac{3}{4}\right)^8 = 6.407226563 \text{ and } 64\left(\frac{3}{4}\right)^9 = 4.805419922$                                                                                                                                                                                    |
|               | dM1     | This is dependent on previous M mark and can be implied. Either                                                                                                                                                                                                                         |
|               |         | $64\left(\frac{3}{4}\right)^8 - 64\left(\frac{3}{4}\right)^9$ or $64\left(\frac{3}{4}\right)^9 - 64\left(\frac{3}{4}\right)^8$ or awrt 6.4 – awrt 4.8, using $a = 64$ (or their <i>a</i> from part (a))                                                                                 |
|               | Note    | $1^{st}$ M1 and $2^{nd}$ M1 can be implied by the value of their                                                                                                                                                                                                                        |
|               | note    |                                                                                                                                                                                                                                                                                         |
|               |         | difference = "their <i>a</i> found in part (a)" $\times \frac{3^8}{4^9} \approx \frac{\text{"their } a \text{ found in part (a)"}}{40}$                                                                                                                                                 |
|               | Note    | Either $64\left(\frac{3}{4}\right)^9 - 64\left(\frac{3}{4}\right)^{10}$ or $64\left(\frac{3}{4}\right)^{10} - 64\left(\frac{3}{4}\right)^9$ is 1 <sup>st</sup> M1, 2 <sup>nd</sup> M0.                                                                                                  |
|               |         |                                                                                                                                                                                                                                                                                         |
|               | A1      | 1.602 or -1.602 cao (This answer with no working is M1M1A1) But 1.6 with no working is M0M0A0                                                                                                                                                                                           |
|               |         |                                                                                                                                                                                                                                                                                         |
|               | Note    | $\left\{D = \frac{1}{4}T_9 \Longrightarrow\right\} D = \frac{1}{4}(64) \left(\frac{3}{4}\right)^\circ \text{ is } 1^{\text{st}} \text{ M1}, 2^{\text{nd}} \text{ M1}$                                                                                                                   |
|               | Special | $\begin{pmatrix} 4 \\ \end{pmatrix}$ Obtains awrt 6.4, then obtains awrt 4.8 but rounds to 6 – 5 when subtracting – award M1M1A0    |
|               | case    | Sound awre o.t, then obtains awre to but rounds to 0 – 5 when subtracting – awald wriwitAD                                                                                                                                                                                              |

| Question<br>Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scheme                                                                                                                                                                                                                                                                                                                                                                                         | Marks         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                    | y = 8 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2^{x-1}, 0, x, 4$                                                                                                                                                                                                                                                                                                                                                                             |               |
| <b>2.</b> (a)      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                              | B1 cao<br>[1] |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                       |               |
| (b)                | $\left(\int_{0}^{4} \left(8-2\right)^{4}\right)^{4} \left(8-2\right)^{4} \left(8-2\right)^{4$ | $2^{x-1} dx \approx \int \frac{1}{2} \times 1; \times \underbrace{\left\{ 7.5 + 2\left(\text{"their 7"} + 6 + 4\right) + 0\right\}}_{\text{for a rule}} \underbrace{\frac{\text{For structure of trapezium}}{\text{rule}\left\{\dots,\dots\right\}}_{\text{for a rulination}} \text{for a rulination}$                                                                                         | <u>M1</u>     |
|                    | $\int = \frac{1}{4} \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left.\begin{array}{c} \text{candidate's } y \text{-ordinates.} \\ 1.5 \end{array}\right\} = 20.75 \text{ o.e.} \qquad \qquad 20.75$                                                                                                                                                                                                                                                          | A1 cao        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                | [3]           |
| (c)                | Area (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= "20.75" - \frac{1}{2}(7.5)(4)$<br>= 5.75 5.75                                                                                                                                                                                                                                                                                                                                               | M1            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 5.75 5.75                                                                                                                                                                                                                                                                                                                                                                                    |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                | [2]           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Question 2 Notes                                                                                                                                                                                                                                                                                                                                                                               |               |
| (a)<br>(b)         | B1<br>B1<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | For 7 only<br>For using $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.<br>Requires the correct {} bracket structure. It needs the 7.5 stated but the 0 may be ominner bracket needs to be multiplied by 2 and to be the summation of the remaining y vatable with no additional values.<br>If the only mistake is a copying error or is to omit one value from 2nd bracket this may be | lues in the   |
|                    | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark he (unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values.<br>For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$                                                                                                                                |               |
|                    | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>NB: Separate trapezia may be used</b> : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times as before.                                                                                                                                                                                                                                                                                      | Then A1       |
|                    | Special<br>case:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final implies that the calculation has been done correctly (then full marks can be given). An a 37.75 usually indicates this error.                                                                                                                                                               |               |
|                    | Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Many candidates use $\frac{1}{2} \times \frac{4}{5}$ and score B0 Then they proceed with $\frac{1}{2} \times \frac{4}{5}$ ("their 7" + 6")                                                                                                                                                                                                                                                     | +4)+0         |
|                    | error:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and score M1 This usually gives 16.6 for B0M1A0                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |
| (c)                | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | their answer to (b) – area of triangle with base 4 and height 7.5 or alternative correct me                                                                                                                                                                                                                                                                                                    | ethod         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{4}{10}$ (75)                                                                                                                                                                                                                                                                                                                                                                            | may be        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e.g. their answer to (b) $-\int_{0}^{4} \left(7.5 - \frac{7.5}{4}x\right) dx$ (Even if this leads to a negative answer) This                                                                                                                                                                                                                                                                   |               |

| Question<br>Number | Scl                                                                                        | neme                                                                                                            | Marks              |
|--------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|
| 3.                 | P(7, 8) and $Q(10, 13)$                                                                    |                                                                                                                 |                    |
| (a)                | $\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2}$                          | $+(13-8)^2$ Applies distance formula.<br>Can be implied.                                                        | M1                 |
|                    | $\{PQ\} = \sqrt{34}$                                                                       | $\sqrt{34}$ or $\sqrt{17}.\sqrt{2}$                                                                             | A1                 |
| (b)<br>Way 1       | $(x-7)^{2} + (y-8)^{2} = 34 \left( \operatorname{or} \left( \sqrt{34} \right)^{2} \right)$ | $(x \pm 7)^2 + (y \pm 8)^2 = k,$<br>where k is a positive <u>value</u> .                                        | [ <b>2</b> ]<br>M1 |
| vvuy 1             |                                                                                            | $(x-7)^2 + (y-8)^2 = 34$                                                                                        | A1 oe              |
| (b)                | 2 2 14 16 70 0                                                                             | $x^{2} + y^{2} \pm 14x \pm 16y + c = 0,$                                                                        | [ <b>2</b> ]<br>M1 |
| Way 2              | $x^2 + y^2 - 14x - 16y + 79 = 0$                                                           | where c is any value < 113.                                                                                     |                    |
|                    |                                                                                            | $x^2 + y^2 - 14x - 16y + 79 = 0$                                                                                | A1 oe              |
| (c)<br>Way 1       | {Gradient of radius} = $\frac{13-8}{10-7}$ or $\frac{5}{3}$                                | This must be seen or implied in part (c).                                                                       | [ <b>2</b> ]<br>B1 |
|                    | 1 ( 2)                                                                                     | Using a perpendicular gradient method on their                                                                  |                    |
|                    | Gradient of tangent $= -\frac{1}{m}\left(=-\frac{3}{5}\right)$                             | gradient. So Gradient of tangent = $-\frac{1}{\text{gradient of radius}}$                                       | M1                 |
|                    | $y - 13 = -\frac{3}{5}(x - 10)$                                                            | y - 13 = (their changed gradient)(x - 10)                                                                       | M1                 |
|                    | 3x + 5y - 95 = 0                                                                           | 3x + 5y - 95 = 0 o.e.                                                                                           | A1<br>[ <b>4</b> ] |
| (c)<br>Way 2       | $2(x-7) + 2(y-8)\frac{dy}{dx} = 0$                                                         | Correct differentiation (or equivalent).<br>Seen or implied                                                     | B1                 |
|                    | $2(10-7) + 2(13-8)\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{3}{5}$                 | Substituting <b>both</b> $x = 10$ and $y = 13$ into a valid differentiation to find a value for $\frac{dy}{dx}$ | M1                 |
|                    | $y - 13 = -\frac{3}{5}(x - 10)$                                                            | y - 13 = (their gradient)(x - 10)                                                                               | M1                 |
|                    | 3x + 5y - 95 = 0                                                                           | 3x + 5y - 95 = 0 o.e.                                                                                           | A1                 |
| (c)                |                                                                                            | 10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0                                                                      | [ <b>4</b> ]<br>B1 |
| Way 3              | 10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0                                                 | 10x + 13y - 7(x + 10) - 8(y + 13) + c = 0                                                                       | M2                 |
|                    | 3x + 5y - 95 = 0                                                                           | where c is any <u>value</u> $<113$<br>3x + 5y - 95 = 0 o.e.                                                     | A1                 |
|                    |                                                                                            | <i>SX</i> + <i>Sy SS</i> <b>=</b> 00.0.                                                                         | [4]<br>8           |
|                    |                                                                                            |                                                                                                                 | 0                  |

|     |                    | Question 3 Notes                                                                                                                                                                                                   |  |  |
|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (a) | M1                 | Allow for $\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2}$ or for $\{PQ =\} \sqrt{3^2 + 5^2}$ . Can be implied by answer.                                                                                                     |  |  |
|     | A1                 | Need to see $\sqrt{34}$ . You can ignore subsequent work so $\sqrt{34}$ followed by 5.83 earns M1 A1, but                                                                                                          |  |  |
|     |                    | $\{PQ =\} \sqrt{3^2 + 5^2} = 5.83$ , with no exact value for the answer given, earns M1A0. Allow                                                                                                                   |  |  |
|     |                    | $\pm\sqrt{34}$ this time.                                                                                                                                                                                          |  |  |
|     |                    | NB Some use equation of circle to find this distance Achieving $\sqrt{34}$ gets M1A1                                                                                                                               |  |  |
|     |                    | thers find half of their $\pm\sqrt{34}$ . Do not isw here as it is an error – confusing <i>d</i> with diameter.<br>ive M1A0                                                                                        |  |  |
| (b) | M1                 | Either of the correct approaches for equation of circle (as shown on scheme)                                                                                                                                       |  |  |
|     | A1                 | Correct equation (two are shown and any correct equivalent is acceptable)                                                                                                                                          |  |  |
| (c) |                    |                                                                                                                                                                                                                    |  |  |
|     |                    | A correct start to finding the gradient of the tangent (see each scheme)                                                                                                                                           |  |  |
|     | B1                 | Complete method for finding the gradient of the tangent (see each scheme) Where implicit differentiation has been used the only slips allowed here should be sign slips.                                           |  |  |
|     | 1 <sup>st</sup> M1 | Correct attempt at line equation for tangent at correct point (10, 13) with <b>their tangent</b> gradient.<br>If the $y = mx + c$ method is used to find the equation, this M1 is earned at the point where the x- |  |  |
|     | 2 <sup>nd</sup> M1 | and y-values are substituted to find c e.g. $13 = -3/5 \times 10 + c$                                                                                                                                              |  |  |
|     |                    | Accept any correct answer of the required format; so integer multiple of $3x + 5y - 95 = 0$ or<br>2y - 05 + 5y - 0 or $-2y - 5y + 05 = 0$ (must include "=0") $-2x - 5y + 10y = 100 = 0$ correct A1                |  |  |
|     | A1                 | 3x - 95 + 5y = 0 or $-3x - 5y + 95 = 0$ (must include "=0") e.g. $6x + 10y - 190 = 0$ earns A1<br>Also allow $5y + 3x - 95 = 0$ etc                                                                                |  |  |
|     | AI                 |                                                                                                                                                                                                                    |  |  |
|     | Common<br>error    | $\frac{dy}{dx} = 2(x-7) + 2(y-8) = 6 + 10 = 16 \text{ so } (y-13) = 16(x-10) \text{ is marked B0 M0 M1 A0 (Way 2)}$                                                                                                |  |  |

| Question<br>Number |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |  |  |
|--------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| 4.                 | $\mathbf{f}(x) = 6.$                                                      | $f(x) = 6x^3 + 13x^2 - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |
| (a)                | $f\left(-\frac{3}{2}\right) =$                                            | $= 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$ Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1           |  |  |
|                    |                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 cao       |  |  |
|                    | <u> </u>                                                                  | Attempts $f(-2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]<br>M1    |  |  |
| (b)                | ` ´                                                                       | $6(-2)^3 + 13(-2)^2 - 4$<br>so $(x + 2)$ is a factor.<br>f(-2) = 0 with no sign or substitution errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1           |  |  |
|                    | - 0, <b>and</b>                                                           | and for conclusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |
| (c)                | $f(\mathbf{r}) = \frac{f(\mathbf{r})}{f(\mathbf{r})}$                     | $(x+2)$ $\{(6x^2+x-2)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [2]<br>M1 A1 |  |  |
| (C)                |                                                                           | (x + 2)((x + x - 2))(x + 2)(x + 1)(3x + 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MI AI        |  |  |
|                    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [4]          |  |  |
|                    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8            |  |  |
| l                  | Note                                                                      | Question 4 Notes<br>Long division scores no marks in part (a). The <u>remainder theorem</u> is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |  |  |
|                    | M1                                                                        | Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$ . $6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4$ or $6\left(\frac{3}{2}\right)^3 + 13\left(\frac{3}{2}\right)^2 - 4$ is so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CC           |  |  |
| (a)                | IVII                                                                      | Attempting $\left[ \left( -\frac{1}{2} \right) \text{ or } \left[ \left( \frac{1}{2} \right) \right] + \left[ \left( -\frac{1}{2} \right) \right] + \left( -\frac{1}{2} \right) + \left[ \left( -\frac{1}{2} \right) \right] + \left[ \left( -\frac{1}{2} \right) \right] + \left[ \left( -\frac{1}{2} \right) \right] + \left[ \left( -\frac{1}{2} \right) + \left( -\frac{1}{2} \right) \right] + \left[ \left( -\frac{1}{2} \right) + \left( -\frac{1}{2$ | arricient    |  |  |
|                    | A1                                                                        | 5 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |  |  |
| (b)                | M1                                                                        | Attempting $f(-2)$ . (This is <b>not</b> given for $f(2)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |  |  |
|                    | A1                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |  |  |
|                    | Note                                                                      | is required here.<br>Stating "hence factor" or "it is a factor" or a "tick" or "QED" are possible conclusions.<br>Also a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$ , $(x + 2)$ is a factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r''          |  |  |
|                    |                                                                           | Long division scores no marks in part (b). The <u>factor theorem</u> is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |  |
| (c)                | 1 <sup>st</sup> M1                                                        | Attempting to divide by $(x + 2)$ leading to a quotient which is quadratic with at least two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | terms        |  |  |
|                    | beginning with first term of $\pm 6x^2 + \text{linear or constant term.}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |  |  |
|                    |                                                                           | Or $f(x) = (x + 2)(\pm 6x^2 + \text{linear and/or constant term})$ (This may be seen in part (b) where candid not use factor theorem and might be referred to here)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ates did     |  |  |
|                    | 1 <sup>st</sup> A1                                                        | $(6x^2 + x - 2)$ seen as quotient or as factor. If there is an error in the division resulting in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a            |  |  |
|                    |                                                                           | remainder give A0, but allow recovery to gain next two marks if $(6x^2 + x - 2)$ is used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |  |  |
|                    | 2 <sup>nd</sup> M1<br>A1                                                  | For a <i>valid</i> attempt to factorise <b>their</b> three term quadratic.<br>(x + 2)(2x - 1)(3x + 2) and needs all three factors on the same line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |
|                    | Special                                                                   | Ignore subsequent work (such as a <b>solution</b> to a quadratic equation).<br><b>Calculator methods:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |
|                    | cases                                                                     | Award M1A1M1A1 for correct answer $(x + 2)(2x - 1)(3x + 2)$ with no working.<br>Award M1A0M1A0 for either $(x + 2)(2x + 1)(3x + 2)$ or $(x + 2)(2x + 1)(3x - 2)$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |
|                    |                                                                           | (x + 2)(2x - 1)(3x - 2) with no working. (At least one bracket incorrect)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |
|                    |                                                                           | Award M1A1M1A1 for $x = -2$ , $\frac{1}{2}$ , $-\frac{2}{3}$ followed by $(x + 2)(2x - 1)(3x + 2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |
|                    |                                                                           | Award M0A0M0A0 for a candidate who writes down $x = -2, \frac{1}{2}, -\frac{2}{3}$ giving no factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |  |  |
|                    |                                                                           | Award M1A1M1A1 for $6(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$ or $2(x + 2)(x - \frac{1}{2})(3x + 2)$ or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |
|                    |                                                                           | Award SC: M1A0M1A0 for $x = -2, \frac{1}{2}, -\frac{2}{3}$ followed by $(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |

| Question<br>Number   | Scheme                                                                                                                                         |                                                                                                     | Marks    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------|
| 5.                   | (a) $(2-9x)^4 = 2^4 + {}^4C_1 2^3 (-9x) + {}^4C_2 2^2 (-9x)^2$ , (b) $f(x) = (-9x)^4 - (-9x)^2$                                                | $(1+kx)(2-9x)^4 = A - 232x + Bx^2$                                                                  |          |
| (a)                  | First term of 16 in their final series                                                                                                         | ·                                                                                                   | B1       |
| Way 1                | At least one of $\begin{pmatrix} {}^{4}C_{1} \times \times x \end{pmatrix}$ or $\begin{pmatrix} {}^{4}C_{2} \times \times x^{2} \end{pmatrix}$ |                                                                                                     | M1       |
|                      | · · · · · · · · · · · · · · · · · · ·                                                                                                          | At least one of $-288x$ or $+1944x^2$                                                               | A1       |
|                      | $=(16) - 288x + 1944x^{2}$                                                                                                                     | Both $-288x$ and $+1944x^2$                                                                         | A1       |
|                      |                                                                                                                                                |                                                                                                     | [4]      |
| (a)                  | $(2-9x)^4 = (4-36x+81x^2)(4-36x+81x^2)$                                                                                                        |                                                                                                     |          |
|                      |                                                                                                                                                | First term of 16 in their final series<br>Attempts to multiply a 3 term                             | B1       |
| Way 2                | $= 16 - 144x + 324x^2 - 144x + 1296x^2 + 324x^2$                                                                                               | quadratic by the same 3 term<br>quadratic to achieve either 2 terms in<br>$\frac{2}{3}$             | M1       |
|                      |                                                                                                                                                | $x \text{ or at least } 2 \text{ terms in } x^2$ .<br>At least one of $-288x \text{ or } + 1944x^2$ | A1       |
|                      | $= (16) - 288x + 1944x^2 $                                                                                                                     | Both $-288x$ of $+1944x^2$                                                                          | A1<br>A1 |
|                      |                                                                                                                                                | $10001 - 200\lambda$ and $-1744\lambda$                                                             | [4]      |
| (a)<br>Way 3         | $\{(2-9x)^4 = \} 2^4 \left(1 - \frac{9}{2}x\right)^4$                                                                                          | First term of 16 in final series                                                                    | B1       |
|                      | $4((9)) 4(3)(9)^2$                                                                                                                             | At least one of                                                                                     |          |
|                      | $= 2^{4} \left( 1 + \frac{4\left(-\frac{9}{2}x\right) + \frac{4(3)}{2}\left(-\frac{9}{2}x\right)^{2} + \dots}{2} \right)$                      | $\underbrace{(4 \times \times x) \text{ or } \left(\frac{4(3)}{2} \times \times x^2\right)}$        | M1       |
|                      | $= (16) - 288x + 1944x^2$                                                                                                                      | At least one of $-288x$ or $+1944x^2$                                                               | A1       |
|                      | $=(10)-2001+1944\lambda$                                                                                                                       | Both $-288x$ and $+1944x^2$                                                                         | A1       |
|                      |                                                                                                                                                |                                                                                                     | [4]      |
| <i>(</i> <b>1</b> -) | Parts (b), (c) and (d) may be marked together<br>A = "16"                                                                                      | Follow through their value from (a)                                                                 | DIA      |
| (b)                  | <i>A</i> = 10                                                                                                                                  | Follow through their value from (a)                                                                 | B1ft [1] |
| (c)                  | $\left\{ (1+kx)(2-9x)^4 \right\} = (1+kx)(16-288x+\{1944x^2+\})$                                                                               | May be seen in part (b) or (d)<br>and can be implied by work in<br>parts (c) or (d).                | M1       |
|                      | x terms: $-288x + 16kx = -232x$                                                                                                                | par is (0) or (a).                                                                                  |          |
|                      | giving, $16k = 56 \implies k = \frac{7}{2}$                                                                                                    | $k = \frac{7}{2}$                                                                                   | A1       |
|                      | <u> </u>                                                                                                                                       | <u></u>                                                                                             | [2]      |
| (d)                  | $x^2$ terms: $1944x^2 - 288kx^2$                                                                                                               |                                                                                                     |          |
|                      | So, $B = 1944 - 288\left(\frac{7}{2}\right)$ ; $= 1944 - 1008 = 936$                                                                           | See notes                                                                                           | M1       |
|                      | $50, D = 1944 - 200 \left(\frac{1}{2}\right), = 1944 - 1008 = 950$                                                                             | 936                                                                                                 | A1       |
|                      |                                                                                                                                                |                                                                                                     | [2]      |
|                      |                                                                                                                                                |                                                                                                     | 9        |

|               | Question 5 Notes   |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |            |  |
|---------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|--|
| (a)<br>Ways 1 | <b>B1 cao</b> 16   |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |            |  |
| and 3         | M1                 | Correct binomial coefficient associated with correct power of x <i>i.e</i> $({}^{4}C_{1} \times \times x)$ or $({}^{4}C_{2} \times \times x^{2})$                                                                                                                                                                                                                               |                                                                                         |            |  |
|               |                    | They may have 4 and 6 or 4 and $\frac{4(3)}{2}$ or even $\begin{pmatrix} 4\\1 \end{pmatrix}$ and $\begin{pmatrix} 4\\2 \end{pmatrix}$ as their coefficients. Allow missing                                                                                                                                                                                                      |                                                                                         |            |  |
|               |                    | 2 (1) (2) signs and brackets for the M marks.                                                                                                                                                                                                                                                                                                                                   |                                                                                         |            |  |
|               | 1 <sup>st</sup> A1 | At least one of $-288x$ or $+1944x^2$ (allow $+-288x$ )                                                                                                                                                                                                                                                                                                                         |                                                                                         |            |  |
|               | 2 <sup>nd</sup> A1 | Both $-288x$ and $+1944x^2$ (May list terms separated by commas) Also full marks for correct answer with no working here. Again allow +- $288x$                                                                                                                                                                                                                                 |                                                                                         |            |  |
|               | Note               | If the candidate then divides their final correct answer through by 8 or any other common factor then isw and mark correct series when first seen. So (a) B1M1A1A1 .It is likely that this approach will be followed by (b) B0, (c) M1A0, (d) M1A0 if they continue with their new series e.g. $2-36x + 283x^2 +$ (Do not ft the value 2 as a mark was awarded for 16)          |                                                                                         |            |  |
| Way 2b        | Special<br>Case    | Slight Variation on the solution given in the                                                                                                                                                                                                                                                                                                                                   | scheme                                                                                  |            |  |
|               | Case               | $(2-9x)^4 = (2-9x)(2-9x)(4-36x+81x^2)$                                                                                                                                                                                                                                                                                                                                          |                                                                                         |            |  |
|               |                    | $= (2-9x)(8-108x+486x^2+)$                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |            |  |
|               |                    | $= 16 - 216x + 972x^2 - 72x + 972x^2$                                                                                                                                                                                                                                                                                                                                           | First term of 16<br>Multiplies out to give either<br>2 terms in x or 2 terms in $x^2$ . | B1<br>M1   |  |
|               |                    |                                                                                                                                                                                                                                                                                                                                                                                 | At least one of $-288x$ or $+1944x^2$                                                   | A1         |  |
|               |                    | $= (16) - 288x + 1944x^2 + \dots$                                                                                                                                                                                                                                                                                                                                               | Both $-288x$ and $+1944x^2$                                                             | A1         |  |
| (b)           | B1ft               | <b>Parts (b), (c) and (d) may be marked togethe</b><br>Must <b>identify</b> $A = 16$ or $A = their$ constant terr<br>clearly their answer to part (b). If they expand t<br>not sufficient for this mark.                                                                                                                                                                        | m found in part (a). Or may write just 16                                               |            |  |
| (c)           | M1                 | Candidate shows intention to multiply $(1+kx)$ b<br>e.g. Just $(1 + kx)(16 - 288x +)$ or $(1 + kx)(16)(16)(16)(16)(16)(16)(16)(16)(16)(16$                                                                                                                                                                                                                                      |                                                                                         |            |  |
|               | Note               | e.g. Just $(1 + kx)(16 - 288x +)$ or $(1 + kx)(16 - 288x + 1944x^2 +)$ are fine for M1.<br>This mark can also be implied by candidate multiplying out to find <b>two terms</b><br>(or coefficients) in x. i.e. f.t. their $-288x + 16kx$ N.B. $-288kx = -232x$ with no evidence of<br>brackets is M0 – allow copying slips, or use of factored series, as this is a method mark |                                                                                         |            |  |
|               | A1                 | $k = \frac{7}{2}$ o.e. so 3.5 is acceptable                                                                                                                                                                                                                                                                                                                                     |                                                                                         |            |  |
| (d)           | M1                 | Multiplies out their $(1 + kx)(16 - 288x + 1944x)$                                                                                                                                                                                                                                                                                                                              | $^{2} +$ ) to give <b>exactly</b> two terms (or coe                                     | fficients) |  |
|               |                    | in $x^2$ and attempts to find <i>B</i> using <b>these two</b> te                                                                                                                                                                                                                                                                                                                | rms and a numerical value of k.                                                         |            |  |
|               | A1<br>Noto         | 936<br>Award A0 for $B = 936x^2$                                                                                                                                                                                                                                                                                                                                                |                                                                                         |            |  |
|               | Note               | Award A0 for $B = 936x^2$<br>But allow A1 for $B = 936x^2$ followed by $B = 1$                                                                                                                                                                                                                                                                                                  | 936 and treat this as a correction                                                      |            |  |
|               |                    | Correct answers in parts (c) and (d) with no me                                                                                                                                                                                                                                                                                                                                 |                                                                                         |            |  |

| Question<br>Number | Scheme                                                                                                                                                                              | Marks          |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| 6.                 | $1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0;  -\pi < \vartheta,  \pi$                                                                                                         |                |  |
| (i)                | $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ or $-\frac{1}{2}$                                | M1             |  |
|                    | $\theta = \left\{-\frac{2\pi}{15}, \frac{8\pi}{15}\right\}$ At least one of $-\frac{2\pi}{15}$ or $\frac{8\pi}{15}$ or $-24^\circ$ or $96^\circ$ or awrt 1.68 or awrt -0.419        | A1             |  |
|                    | $B = \left\{ -\frac{15}{15}, \frac{15}{15} \right\}$ Both $-\frac{2\pi}{15}$ and $\frac{8\pi}{15}$                                                                                  | A1             |  |
| NB<br>Misread      | <b>Misreading</b> $\frac{\pi}{5}$ as $\frac{\pi}{6}$ or $\frac{\pi}{3}$ (or anything else)– treat as misread so M1 A0 A0 is maximum mark                                            | [3]            |  |
|                    | $4\cos^2 x + 7\sin x - 2 = 0, 0, x < 360^\circ$                                                                                                                                     |                |  |
| (ii)               | $4(1 - \sin^2 x) + 7\sin x - 2 = 0$ Applies $\cos^2 x = 1 - \sin^2 x$                                                                                                               | M1             |  |
|                    | $4 - 4\sin^2 x + 7\sin x - 2 = 0$                                                                                                                                                   |                |  |
|                    | $4\sin^2 x - 7\sin x - 2 = 0$ Correct 3 term, $4\sin^2 x - 7\sin x - 2 \{= 0\}$                                                                                                     | A1 oe          |  |
|                    | $(4\sin x + 1)(\sin x - 2) \{= 0\}$ , $\sin x =$ Valid attempt at solving and $\sin x =$                                                                                            | M1             |  |
|                    | $\sin x = -\frac{1}{4}$ , $\{\sin x = 2\}$ $\sin x = -\frac{1}{4}$ (See notes.)                                                                                                     | A1 cso         |  |
|                    | $x = awrt \{194.5, 345.5\}$ At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or<br>awrt 6.0                                                                                     | Alft           |  |
|                    | awrt 194.5 <b>and</b> awrt 345.5                                                                                                                                                    | A1<br>[6]<br>9 |  |
| NB<br>Misread      | Writing equation as $4\cos^2 x - 7\sin x - 2 = 0$ with a sign error should be marked by applying the scheme as it simplifies the solution (do not treat as misread) Max mark is 3/6 |                |  |
|                    | $4(1 - \sin^2 x) - 7\sin x - 2 = 0$                                                                                                                                                 | M1             |  |
|                    | $4\sin^2 x + 7\sin x - 2 = 0$                                                                                                                                                       | A0             |  |
|                    | $(4\sin x - 1)(\sin x + 2) \{= 0\}$ , $\sin x =$ Valid attempt at solving and $\sin x =$                                                                                            | M1             |  |
|                    | $\sin x = +\frac{1}{4}$ , $\{\sin x = -2\}$ $\sin x = \frac{1}{4}$ (See notes.)                                                                                                     | A0             |  |
|                    | <i>x</i> = awrt165.5                                                                                                                                                                | A1ft           |  |
|                    | Incorrect answers                                                                                                                                                                   | A0             |  |

|      | Question 6 Notes   |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (i)  | M1                 | Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \pm \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|      | Note               | M1 can be implied by seeing either $\frac{\pi}{3}$ or 60° as a result of taking cos <sup>-1</sup> ().                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|      | A1                 | Answers <b>may be in degrees or radians</b> for this mark and may have just one correct answer Ignore mixed units in working if correct answers follow (recovery)                                                                                                                                                                                                                                                   |  |  |  |  |
|      | A1                 | Both answers correct and in radians as multiples of $\pi = -\frac{2\pi}{15}$ and $\frac{8\pi}{15}$                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|      |                    | Ignore EXTRA solutions outside the range $-\pi < \theta \le \pi$ but lose this mark for extra solutions in this range.                                                                                                                                                                                                                                                                                              |  |  |  |  |
| (ii) | 1 <sup>st</sup> M1 | Using $\cos^2 x = 1 - \sin^2 x$ on the given equation. [Applying $\cos^2 x = \sin^2 x - 1$ , scores M0.]                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|      | 1 <sup>st</sup> A1 | Obtaining a correct three term equation eg. either $4\sin^2 x - 7\sin x - 2 \{=0\}$                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|      |                    | or $-4\sin^2 x + 7\sin x + 2 = 0$ or $4\sin^2 x - 7\sin x = 2$ or $4\sin^2 x = 7\sin x + 2$ , etc.                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|      | 2 <sup>nd</sup> M1 | For a valid attempt at solving a 3TQ quadratic in sine. Methods include factorization, quadratic formula, completion of the square (unlikely here) and calculator. (See notes on page 6 for general principles on awarding this mark) Can use any variable here, $s$ , $y$ , $x$ or $sin x$ , and an attempt to find at least one of the solutions for sin $x$ . This solution may be outside the range for sin $x$ |  |  |  |  |
|      | 2 <sup>nd</sup> A1 | $\sin x = -\frac{1}{4}$ BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra answer                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|      |                    | of $\sin x = 2$ , but penalise if candidate states an incorrect result. e.g. $\sin x = -2$ .                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|      | Note               | $\sin x = -\frac{1}{4}$ can be implied by later correct working if no errors are seen.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|      | 3rd A1ft           | At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0. This is a limited follow through.                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|      |                    | Only follow through on the error $\sin x = \frac{1}{4}$ and allow for 165.5 special case (as this is equivalent                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|      |                    | work) This error is likely to earn M1A1M1A0A1A0 so 4/6 or M1A0M1A0A1A0 if the quadratic had a sign slip.                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|      | 4 <sup>th</sup> A1 | awrt 194.5 and awrt 345.5                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|      | Note               | If there are any EXTRA solutions inside the range 0 ,, $x < 360^{\circ}$ and the candidate would                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|      |                    | otherwise score FULL MARKS then withhold the final A1 mark.<br>Ignore EXTRA solutions outside the range 0, $x < 360^{\circ}$ .                                                                                                                                                                                                                                                                                      |  |  |  |  |
|      | Special<br>Cases   | Rounding error Allow M1A1M1A1A1A0 for those who give two correct answers but wrong accuracy e.g. awrt 194, 346 (Remove final A1 for this error)<br>Answers in radians:– <b>lose final</b> mark so either or both of 3.4, 6.0 gets A1ftA0<br>It is possible to earn M1A0A1A1 on the final 4 marks if an error results fortuitously in $\sin x = -1/4$ then correct work follows.                                     |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           | Marks                |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
|                    |                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                     | Either                                                                                                                    | M1 -                 |  |  |
|                    | $\int \int (3x - x^{\frac{3}{2}})^{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                            | $\left. \right) dx \right\} = \frac{3x^2}{2} - \frac{x^{\overline{2}}}{\left(\frac{5}{2}\right)} \left\{ + c \right\}$                                                                                                                                                                                                | $3x \rightarrow \pm \lambda x^2 \text{ or } x^{\frac{3}{2}} \rightarrow \pm \mu x^{\frac{5}{2}}, \ \lambda, \ \mu \neq 0$ |                      |  |  |
| <b>7.</b> (a)      | [][ <sup>su</sup> "                                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$                                                                                                                                                                                                  | At least one term correctly integrated                                                                                    | A1                   |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | (2)                                                                                                                                                                                                                                                                                                                   | Both terms correctly integrated                                                                                           | A1                   |  |  |
| (b)                | 2                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                       | Sate $y = 0$ in order to find                                                                                             | [ <b>3</b> ]<br>M1 了 |  |  |
| (0)                | $0 = 3x - x^{\frac{3}{2}} \Rightarrow 0 = 3 - x^{\frac{1}{2}} \text{ or } 0 = x \left(3 - x^{\frac{1}{2}}\right) \Rightarrow x = \dots$ Sets $y = 0$ , in order to find the correct $\frac{1}{2}$ , $2 = x = 0$                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |                      |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | ( )                                                                                                                                                                                                                                                                                                                   | the correct $x^{\frac{1}{2}} = 3$ or $x = 9$                                                                              |                      |  |  |
|                    | $\begin{cases} \operatorname{Area}(S) = \begin{bmatrix} \\ \end{bmatrix} \end{cases}$                                                                                                                                                                                                                                                                       | $\left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}}\right]_0^9$                                                                                                                                                                                                                                                        |                                                                                                                           |                      |  |  |
|                    | $=\left(\frac{3(9)^2}{2}-\right)$                                                                                                                                                                                                                                                                                                                           | $\left(\frac{2}{5}\right)(9)^{\frac{5}{2}}\right) - \{0\}$                                                                                                                                                                                                                                                            | Applies the limit 9 on an integrated function with <b>no wrong lower limit</b> .                                          | ddM1                 |  |  |
|                    | $\left\{=\left(\frac{243}{2}-\frac{4}{2}\right)\right\}$                                                                                                                                                                                                                                                                                                    | $\left \frac{86}{5}\right  - \{0\} = \frac{243}{10}$ or 24.3                                                                                                                                                                                                                                                          | $\frac{243}{10}$ or 24.3                                                                                                  | A1<br>oe             |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           | [3]                  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | Question 7 N                                                                                                                                                                                                                                                                                                          | lotes                                                                                                                     | 6                    |  |  |
| (a)                | M1                                                                                                                                                                                                                                                                                                                                                          | Either $3x \rightarrow \pm \lambda x^2$ or $x^{\frac{3}{2}} \rightarrow \pm \mu x^{\frac{5}{2}}$ , $\lambda, \mu \neq 0$                                                                                                                                                                                              |                                                                                                                           |                      |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |                      |  |  |
|                    | 1 <sup>st</sup> A1                                                                                                                                                                                                                                                                                                                                          | At least one term correctly integrated. Can be simplified. Then isw.                                                                                                                                                                                                                                                  | simplified or un-simplified but power must b                                                                              | e                    |  |  |
|                    | 2 <sup>nd</sup> A1                                                                                                                                                                                                                                                                                                                                          | <sup>d</sup> A1 Both terms correctly integrated. Can be un-simplified (as in the scheme) but the $n+1$ in each denominator and power should be a single number. (e.g. $2 - not 1+1$ ) Ignore subsequent work if there are errors simplifying. Ignore the omission of " $+c$ ". Ignore integral signs in their answer. |                                                                                                                           |                      |  |  |
| (b)                | 1 <sup>st</sup> M1                                                                                                                                                                                                                                                                                                                                          | 1 <sup>st</sup> M1 Sets $y = 0$ , and reaches the correct $x^{\frac{1}{2}} = 3$ or $x = 9$ (isw if $x^{\frac{1}{2}} = 3$ is followed by $x = \sqrt{3}$ )                                                                                                                                                              |                                                                                                                           |                      |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | Just seeing $x = \sqrt{3}$ without the correct $x^{\frac{1}{2}} =$                                                                                                                                                                                                                                                    |                                                                                                                           |                      |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | Just seeing $x = \sqrt{3}$ without the correct $x^2 =$                                                                                                                                                                                                                                                                | 5 gams 100. Whay just see $x = 9$ .                                                                                       |                      |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | Use of trapezium rule to find area is M0A0 as                                                                                                                                                                                                                                                                         | hence implies integration needed.                                                                                         |                      |  |  |
|                    | ddM1 This mark is dependent on the two previous method marks and needs both to have been awarded. Sees the limit 9 substituted in an integrated function. (Do not follow through their value of $x$ ) Do not need to see MINUS 0 but if another value is used as lower limit – this is M0. This mark may be implied by 9 in the limit and a correct answer. |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |                      |  |  |
|                    | A1                                                                                                                                                                                                                                                                                                                                                          | $\frac{243}{10}$ or 24.3                                                                                                                                                                                                                                                                                              |                                                                                                                           |                      |  |  |
|                    | <b>Common Error</b> $0 = 3x - x^{\frac{3}{2}} \implies x^{\frac{1}{2}} = 3 \text{ so } x = \sqrt{3}$                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |                      |  |  |
|                    | Error                                                                                                                                                                                                                                                                                                                                                       | <b>Then</b> uses limit $\sqrt{3}$ etc gains M1 M0 A0                                                                                                                                                                                                                                                                  |                                                                                                                           |                      |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |                      |  |  |

| Question<br>Number                                           | Scheme                                                                                                                                                                                                                           | Marks              |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| 8(i)                                                         | Two Ways of answering the question are given in part (i)                                                                                                                                                                         |                    |  |
| Way 1                                                        | $\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms                                                                                               | M1                 |  |
|                                                              | $\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{ or } \left( \frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.                                                      | M1                 |  |
|                                                              | $\{9b+3=a-2 \Rightarrow\} \ b=\frac{1}{9}a-\frac{5}{9}$ $b=\frac{1}{9}a-\frac{5}{9}$ or $b=\frac{a-5}{9}$                                                                                                                        | A1 oe              |  |
|                                                              | In <b>Way 2</b> a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs                                                                                       | [3]                |  |
| (i)<br>Way 2                                                 | Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$                                                                                                                                       | 2 <sup>nd</sup> M1 |  |
| Way 2                                                        | $\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right) \text{ or } \log_3 3(3b+1) = \log_3(a-2)$                                                                                                              | 1 <sup>st</sup> M1 |  |
|                                                              | $\{3b+1=\frac{a-2}{3}\}$ $b=\frac{1}{9}a-\frac{5}{9}$                                                                                                                                                                            | Al                 |  |
|                                                              |                                                                                                                                                                                                                                  | [3]                |  |
|                                                              | Five Ways of answering the question are given in part (ii)                                                                                                                                                                       |                    |  |
| (ii)                                                         | $32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32                                                                                                                                                                | M1                 |  |
| Way 1<br>See also<br>common<br>approach<br>below in<br>notes | So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219                                                                                                                                               | A1 oe<br>dM1       |  |
|                                                              | $x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$<br>Or $2^x = k$ to achieve $x = \dots$ |                    |  |
|                                                              | x = -2.192645 awrt $-2.19$                                                                                                                                                                                                       | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [4]                |  |
|                                                              | Begins with $2^{2x+5} = 7(2^x)$ (for Way 2 and Way 3) (see notes below)                                                                                                                                                          |                    |  |
| (ii)<br>Way 2                                                | Correct application of (2x + 5) log 2 = log 7 + x log 2<br><b>either</b> the power law <b>or</b> addition law of logarithms                                                                                                      | M1                 |  |
|                                                              | <b>Correct result</b> after applying                                                                                                                                                                                             | A1                 |  |
|                                                              | the power <b>and</b> addition laws of logarithms.<br>$2x \log 2 + 5 \log 2 = \log 7 + x \log 2$                                                                                                                                  |                    |  |
|                                                              | $\Rightarrow x = \frac{\log 7 - 5\log 2}{\log 2}$ Multiplies out, collects x terms to achieve $x =$                                                                                                                              | dM1                |  |
|                                                              | x = -2.192645 awrt $-2.19$                                                                                                                                                                                                       | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [4]                |  |
|                                                              | Evidence of $\log_2$ and either $2^{2x+5} \rightarrow 2x+5$                                                                                                                                                                      | M1                 |  |
| (ii)<br>Way 3                                                | $2x + 5 = \log_2 7 + x$ or $7(2^x) \to \log_2 7 + \log_2(2^x)$                                                                                                                                                                   | 1011               |  |
| , ruy 5                                                      | $2x + 5 = \log_2 7 + x$ oe.                                                                                                                                                                                                      | A1                 |  |
|                                                              | $2x - x = \log_2 7 - 5$<br>$\Rightarrow x = \log_2 7 - 5$ Collects x terms to achieve $x =$                                                                                                                                      | dM1                |  |
|                                                              | x = -2.192645 awrt $-2.19$                                                                                                                                                                                                       | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [4]                |  |

| (ii)<br>Way 4        | $2^{2x+5} = 7(2^x) \Longrightarrow 2^{x+5} = 7$                                                                  |      |
|----------------------|------------------------------------------------------------------------------------------------------------------|------|
|                      | Evidence of $\log_2$                                                                                             | M1   |
|                      | $x + 5 = \log_2 7$ or $\frac{\log 7}{\log 2}$ and either $2^{x+5} \rightarrow x + 5$ or $7 \rightarrow \log_2 7$ | 1011 |
|                      | $x + 5 = \log_2 7 $ oe.                                                                                          | A1   |
|                      | $x = \log_2 7 - 5$ Rearranges to achieve $x =$                                                                   | dM1  |
|                      | x = -2.192645 awrt $-2.19$                                                                                       | A1   |
|                      |                                                                                                                  | [4]  |
| Way 5<br>(similar to | $2^{2x+5} = 2^{\log_2 7} (2^x)$ 7 is replaced by $2^{\log_2 7}$                                                  | M1   |
| Way 3)               | $2x + 5 = \log_2 7 + x$ $2x + 5 = \log_2 7 + x$ oe.                                                              | A1   |
|                      | $2x - x = \log_2 7 - 5$<br>$\Rightarrow x = \log_2 7 - 5$ Collects x terms to achieve $x =$                      | dM1  |
|                      | x = -2.192645 awrt $-2.19$                                                                                       | A1   |
|                      |                                                                                                                  | [4]  |
|                      |                                                                                                                  | 7    |

|      | Question 8 Notes                                                                                                                                             |                                                                                                                                                                                                                                       |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (i)  | 1 <sup>st</sup> M1                                                                                                                                           | Applying either the addition or subtraction law of logarithms correctly to combine                                                                                                                                                    |  |  |
|      |                                                                                                                                                              | any <b>two</b> log terms into <b>one</b> log term.                                                                                                                                                                                    |  |  |
|      | 2 <sup>nd</sup> M1                                                                                                                                           | For making a correct connection between log base 3 and 3 to a power.                                                                                                                                                                  |  |  |
|      | A1                                                                                                                                                           | $b = \frac{1}{9}a - \frac{5}{9}$ or $b = \frac{a-5}{9}$ o.e. e.g. Accept $b = \frac{1}{3}\left(\frac{a}{3} - \frac{5}{3}\right)$ but not $b = \frac{a-2}{9} - \frac{3}{9}$ nor $b = \frac{\left(\frac{a}{3} - \frac{5}{3}\right)}{3}$ |  |  |
| (ii) | 1 <sup>st</sup> M1                                                                                                                                           | First step towards solution – an equation with one side or other correct or one term dealt with correctly (see five* possible methods above)                                                                                          |  |  |
|      | 1 <sup>st</sup> A1                                                                                                                                           | Completely correct first step – giving a correct equation as shown above                                                                                                                                                              |  |  |
|      | dM1                                                                                                                                                          | Correct complete method (all log work correct) and working to reach $x =$ in terms of logs                                                                                                                                            |  |  |
|      | and A 1                                                                                                                                                      | reaching a correct expression or one where the only errors are slips solving linear equations                                                                                                                                         |  |  |
|      | 2 <sup>nd</sup> A1                                                                                                                                           | Accept answers which round to -2.19 If a second answer is also given this becomes A0                                                                                                                                                  |  |  |
|      | Special Writes $\frac{\log_3(3b+1)}{\log_3(a-2)} = -1$ and proceeds to $\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\}$ and to correct answer-Give |                                                                                                                                                                                                                                       |  |  |
|      | Case in<br>(i)                                                                                                                                               | M0M1A1 (special case)                                                                                                                                                                                                                 |  |  |
|      | Common                                                                                                                                                       | Let $2^x = y$ Treat this as <b>Way 1</b> They get $32y^2 - 7y = 0$ for M1 and need to reach $y = \frac{7}{32}$ for A1                                                                                                                 |  |  |
|      | approach<br>to part                                                                                                                                          | Then back to <b>Way 1</b> as before. Any letter may be used for the new variable which I have called <i>y</i> .                                                                                                                       |  |  |
|      | (ii)                                                                                                                                                         | If they use x and obtain $x = \frac{7}{32}$ , this may be awarded M1A0M0A0                                                                                                                                                            |  |  |
|      |                                                                                                                                                              | Those who get $y^2 - 7y + 32 = 0$ or $y^7 - 7y = 0$ will be awarded M0,A0,M0,A0                                                                                                                                                       |  |  |
|      | Common                                                                                                                                                       | <b>Many begin with</b> $\log(2^{2x+5}) - \log(7(2^x)) = 0$ . It is possible to reach this in two stages                                                                                                                               |  |  |
|      | Present-<br>ation of<br>Work in                                                                                                                              | correctly so do not penalise this and award the full marks if they continue correctly as in Way 2. If however the solution continues with $(2x+5)\log 2 - x\log 14 = 0$ or with                                                       |  |  |
|      | ii                                                                                                                                                           | $(2x+5)\log 2 - 7x\log 2 = 0$ (both incorrect) then they are awarded M1A0M0A0 just getting                                                                                                                                            |  |  |
|      |                                                                                                                                                              | credit for the $(2x + 5) \log 2$ term.                                                                                                                                                                                                |  |  |
|      | Note                                                                                                                                                         | N.B. The answer (+)2.19 results from "algebraic errors solving linear equations" leading to                                                                                                                                           |  |  |
|      | Note $2^x = \frac{32}{7}$ and gets M1A0M1A0                                                                                                                  |                                                                                                                                                                                                                                       |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                    | Marks                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>9.</b> (a)      | Area( <i>FEA</i> ) = $\frac{1}{2}x^2\left(\frac{2\pi}{3}\right)$ ; = $\frac{\pi x^2}{3}$<br>$\frac{1}{2}x^2 \times \left(\frac{2\pi}{3}\right)$ or $\frac{120}{360} \times \pi x^2$ simplified or unsimplified                            | M1                   |
|                    | $\frac{\pi x^2}{3}$                                                                                                                                                                                                                       | A1                   |
|                    | Parts (b) and (c) may be marked together                                                                                                                                                                                                  | [2]                  |
|                    |                                                                                                                                                                                                                                           | M1                   |
| (b)                | $\{A = \} \frac{1}{2}x^2 \sin 60^\circ + \frac{1}{3}\pi x^2 + 2xy$ Attempt to sum 3 areas (at least one correct)<br>Correct expression for at least two terms of A                                                                        | A1                   |
|                    | $1000 = \frac{\sqrt{3}x^2}{4} + \frac{\pi x^2}{3} + 2xy \implies y = \frac{500}{x} - \frac{\sqrt{3}x}{8} - \frac{\pi x}{6}$ $\implies y = \frac{500}{x} - \frac{x}{24}(4\pi + 3\sqrt{3})  *$ Correct proof.                               | A1 *                 |
| (c)                | $\{P = \} x + x\theta + y + 2x + y \ \left\{ = 3x + \frac{2\pi x}{3} + 2y \right\}$<br>Correct expression in x and y for their $\theta$ measured in rads                                                                                  | [ <b>3</b> ]<br>B1ft |
|                    | 2 $y = +2\left(\frac{500}{x} - \frac{x}{24}\left(4\pi + 3\sqrt{3}\right)\right)$ Substitutes expression from (b) into<br>y term.                                                                                                          | M1                   |
|                    | $P = 3x + \frac{2\pi x}{3} + \frac{1000}{x} - \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x \implies P = \frac{1000}{x} + 3x + \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x$                                                                             |                      |
|                    | $\Rightarrow \underline{P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3}\right)} $ Correct proof.                                                                                                                            | A1 *                 |
|                    | Parts (d) and (e) should be marked together                                                                                                                                                                                               | [3]                  |
|                    | $- \frac{1000}{2} \rightarrow \frac{\pm \lambda}{2}$                                                                                                                                                                                      | M1                   |
| (d)                | $\frac{dP}{dx} = -1000x^{-2} + \frac{4\pi + 36 - 3\sqrt{3}}{12}; = 0$ Correct differentiation (need not be simplified).                                                                                                                   | A1;                  |
|                    | Their $P' = 0$                                                                                                                                                                                                                            | M1                   |
|                    | $\Rightarrow x = \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \ (= 16.63392808) \qquad \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \ \text{or awrt } 17 \ \text{(may be}$                                                              | A1                   |
|                    | $\left\{P = \frac{1000}{(16.63)} + \frac{(16.63)}{12} \left(4\pi + 36 - 3\sqrt{3}\right)\right\} \Rightarrow P = 120.236 \text{ (m)} \qquad \text{awrt } 120$                                                                             | A1                   |
|                    |                                                                                                                                                                                                                                           | [5]                  |
|                    | Finds $P''$ and considers sign.                                                                                                                                                                                                           | M1                   |
| (e)                | $\frac{d^2 P}{dx^2} = \frac{2000}{x^3} > 0 \Rightarrow \text{Minimum} \qquad \frac{2000}{x^3} \text{ (need not be simplified) and } > 0 \text{ and conclusion.}$<br>Only follow through on a correct $P''$ and x in range $10 < x < 25$ . | A1ft                 |
|                    |                                                                                                                                                                                                                                           | [2]                  |
|                    |                                                                                                                                                                                                                                           | 15                   |

|              |                     | Question 9 Notes                                                                                                                                                                                                                                                                    |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)          | M1                  | Attempts to use Area( <i>FEA</i> ) = $\frac{1}{2}x^2 \times \frac{2\pi}{3}$ (using radian angle) or $\frac{120}{360} \times \pi x^2$ (using angle in                                                                                                                                |
|              |                     | degrees)                                                                                                                                                                                                                                                                            |
|              | A1                  | $\frac{\pi x^2}{3}$ cao (Must be simplified and be their answer in part (a)) Answer only implies M1A1.                                                                                                                                                                              |
|              |                     | N.B. Area( <i>FEA</i> ) = $\frac{1}{2}x^2 \times 120$ is awarded M0A0                                                                                                                                                                                                               |
| (b)          | M1                  | An attempt to sum 3 " areas" consisting of rectangle, triangle and sector (allow slips even in dimensions) but <b>one area</b> should be correct                                                                                                                                    |
|              | 1 <sup>st</sup> A1  | Correct expression for <b>two</b> of the <b>three</b> areas listed above.                                                                                                                                                                                                           |
|              |                     | Accept any correct equivalents e.g. two correct from $\frac{1}{2}x^2 \sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{4}x^2\sqrt{3}$ , $\frac{1}{2}\times\frac{2}{3}\pi x^2$ , $2xy$                                                                                                    |
|              | 2 <sup>nd</sup> A1* | This is a given answer which should be stated and should be achieved without error so all three areas must have been correct and their sum put equal to 1000 and an intermediate step of rearrangement should be present.                                                           |
| ( <b>c</b> ) | B1ft                | Correct expression for <i>P</i> from arc length, length <i>AB</i> and three sides of rectangle in terms of both <i>x</i> and <i>y</i> with $2y$ (or $y + y$ ), $3x$ (or $x + 2x$ ) (or $x + x + x$ ), and $x\theta$ clearly listed. Allow addition after substitution of <i>y</i> . |
|              |                     | NB $\theta = \frac{2\pi}{3}$ but allow use of their consistent $\theta$ in radians (usually $\theta = \frac{\pi}{3}$ ) from parts (a) and                                                                                                                                           |
|              |                     | (b) for this mark. $120x$ or $60x$ do not get this mark.                                                                                                                                                                                                                            |
|              | M1                  | Substitutes $y = \frac{500}{r} - \frac{x}{24} (4\pi + 3\sqrt{3})$ or their unsimplified attempt at y from earlier (allow                                                                                                                                                            |
|              |                     | slips e.g. sign slips) into $2y$ term.                                                                                                                                                                                                                                              |
|              | A1*                 | This is a given answer which should be stated and should be achieved without error                                                                                                                                                                                                  |
| ( <b>d</b> ) | 1 <sup>st</sup> M1  | Need to see at least $\frac{1000}{x} \rightarrow \frac{\pm \lambda}{x^2}$                                                                                                                                                                                                           |
|              | 1 <sup>st</sup> A1  | Correct differentiation of both terms (need not be simplified) Not follow through. Allow any correct equivalent.                                                                                                                                                                    |
|              |                     | e.g. $\frac{dP}{dx} = -1000x^{-2} + \frac{\pi}{3} + 3 - \frac{\sqrt{3}}{4}$ Also allow $\frac{dP}{dx} = -1000x^{-2} + awrt 3.61$                                                                                                                                                    |
|              |                     | Check carefully as there are many correct equivalents and some have two terms in $x\pi$ to                                                                                                                                                                                          |
|              |                     | differentiate obtaining for example $\frac{2\pi}{3} - \frac{8\pi}{24}$ instead of $\frac{\pi}{3}$                                                                                                                                                                                   |
|              | 2 <sup>nd</sup> M1  | Setting their $\frac{dP}{dx} = 0$ . Do not need to find x, but if inequalities are used this mark cannot be                                                                                                                                                                         |
|              |                     | dx<br>gained until candidate states or uses a value of x without inequalities. May not be explicit but<br>may be implied by correct working and value or expression for x. May result in $x^2 < 0$ so                                                                               |
|              |                     | M1A0                                                                                                                                                                                                                                                                                |
|              | 2 <sup>nd</sup> A1  | There is no requirement to write down a value for $x$ , so this mark may be implied by a correct value for $P$ . It may be given for a correct expression or value for $x$ of 16.6, 16.7 or 17                                                                                      |
|              | 3rd A1              | Allow answers wrt 120 but not 121                                                                                                                                                                                                                                                   |
| (e)          | M1                  | Finds $P''$ and considers sign. Follow through correct differentiation of their $P'$ (not just reduction of power)                                                                                                                                                                  |
|              | A1ft                | Need $\frac{2000}{x^3}$ and > 0 (or positive value) and conclusion. Only follow through on a correct $P''$                                                                                                                                                                          |
|              |                     | and a value for x in the range $10 < x < 25$ (need not see x substituted but an x should have been found)                                                                                                                                                                           |
|              |                     | If $P$ is substituted then this is awarded M1 A0                                                                                                                                                                                                                                    |

|  | Special | (d) Some candidates multiply P by 12 to "simplify" If they write                                                                        |  |
|--|---------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
|  | case    | $\frac{dP}{dx} = -12000x^{-2} + 4\pi + 36 - 3\sqrt{3}; = 0 \text{ then solve they will get the correct } x \text{ and } P \text{ They}$ |  |
|  |         | should be awarded M1A0M1A1A1 in part (d). If they then do part (e) writing                                                              |  |
|  |         | $\frac{d^2 P}{dx^2} = \frac{24000}{x^3} > 0 \Rightarrow \text{Minimum They should be awarded M1A0 (so lose 2 marks in all)}$            |  |
|  |         | If they wrote $\frac{d(12P)}{dx} = -12000x^{-2} + 4\pi + 36 - 3\sqrt{3}$ ; = 0 etc they could get full marks.                           |  |