Paper Reference(s)

6664/01 **Edexcel GCE**

Core Mathematics C2

Advanced Subsidiary

Thursday 22 May 2014 - Morning

Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Pink)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for the parts of questions are shown in round brackets, e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner.

Answers without working may not gain full credit.

P43177A This publication may only be reproduced in accordance with Pearson Education Limited copyright policy. ©2014 Pearson Education Limited

1.

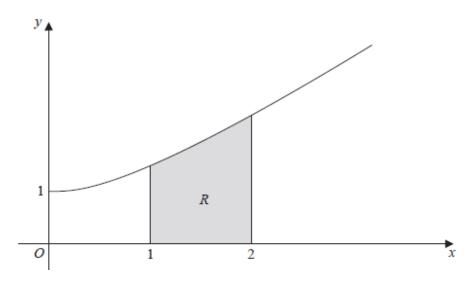


Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \sqrt{(x^2 + 1)}$, $x \ge 0$.

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines x = 1 and x = 2.

The table below shows corresponding values for x and y for $y = \sqrt{(x^2 + 1)}$.

х	1	1.25	1.5	1.75	2
у	1.414		1.803	2.016	2.236

(a) Complete the table above, giving the missing value of y to 3 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for the area of R, giving your answer to 2 decimal places.

(4)

2.
$$f(x) = 2x^3 - 7x^2 + 4x + 4.$$

(a) Use the factor theorem to show that (x-2) is a factor of f(x).

(2)

(b) Factorise f(x) completely.

(4)

3. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 - 3x)^6$, giving each term in its simplest form.

(4)

(b) Hence, or otherwise, find the first 3 terms, in ascending powers of x, of the expansion of

$$\left(1+\frac{x}{2}\right)(2-3x)^6.$$

(3)

4. Use integration to find

$$\int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) \mathrm{d}x,$$

giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(5)

5.

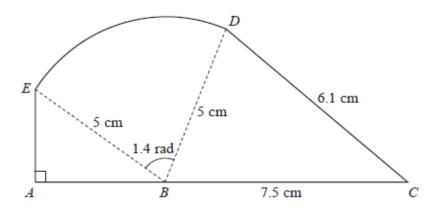


Figure 2

The shape *ABCDEA*, as shown in Figure 2, consists of a right-angled triangle *EAB* and a triangle *DBC* joined to a sector *BDE* of a circle with radius 5 cm and centre *B*.

The points A, B and C lie on a straight line with BC = 7.5 cm.

Angle $EAB = \frac{\pi}{2}$ radians, angle EBD = 1.4 radians and CD = 6.1 cm.

- (a) Find, in cm^2 , the area of the sector *BDE*. (2)
- (b) Find the size of the angle DBC, giving your answer in radians to 3 decimal places. (2)
- (c) Find, in cm², the area of the shape *ABCDEA*, giving your answer to 3 significant figures. (5)
- **6.** The first term of a geometric series is 20 and the common ratio is $\frac{7}{8}$. The sum to infinity of the series is S_{∞} .
 - (a) Find the value of S_{∞} . (2)

The sum to N terms of the series is S_N .

- (b) Find, to 1 decimal place, the value of S_{12} . (2)
- (c) Find the smallest value of N, for which $S_{\infty} S_N < 0.5$.

P43177A 4

7. (i) Solve, for $0 \le \theta < 360^\circ$, the equation $9 \sin (\theta + 60^\circ) = 4$, giving your answers to 1 decimal place. You must show each step of your working.

(4)

(ii) Solve, for $-\pi \le x < \pi$, the equation $2 \tan x - 3 \sin x = 0$, giving your answers to 2 decimal places where appropriate.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(5)

8. (a) Sketch the graph of

$$y = 3^x, x \in \mathbb{R}$$
,

showing the coordinates of any points at which the graph crosses the axes.

(2)

(b) Use algebra to solve the equation $3^{2x} - 9(3^x) + 18 = 0$, giving your answers to 2 decimal places where appropriate.

(5)

9.

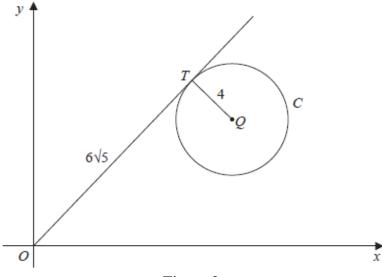


Figure 3

Figure 3 shows a circle C with centre Q and radius 4 and the point T which lies on C. The tangent to C at the point T passes through the origin O and $OT = 6\sqrt{5}$.

Given that the coordinates of Q are (11, k), where k is a positive constant,

(a) find the exact value of k,

(3)

(b) find an equation for C.

(2)

10.

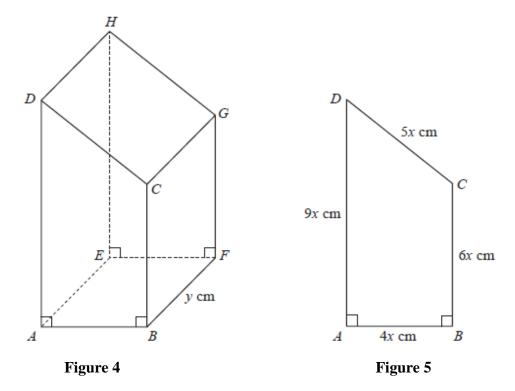


Figure 4 shows a closed letter box *ABFEHGCD*, which is made to be attached to a wall of a house.

The letter box is a right prism of length y cm as shown in Figure 4. The base ABFE of the prism is a rectangle. The total surface area of the six faces of the prism is $S \text{ cm}^2$.

The cross section ABCD of the letter box is a trapezium with edges of lengths DA = 9x cm, AB = 4x cm, BC = 6x cm and CD = 5x cm as shown in Figure 5.

The angle $DAB = 90^{\circ}$ and the angle $ABC = 90^{\circ}$. The volume of the letter box is 9600 cm³.

(a) Show that
$$y = \frac{320}{x^2}$$
.

(2)

(b) Hence show that the surface area of the letter box, $S \text{ cm}^2$, is given by $S = 60x^2 + \frac{7680}{x}$.

(4)

(c) Use calculus to find the minimum value of S.

(6)

(d) Justify, by further differentiation, that the value of S you have found is a minimum.

(2)

TOTAL FOR PAPER: 75 MARKS

END

6

P43177A

Question Number			Sch	neme			Marks
	<u>x</u>	1	1.25	1.5	1.75	2	
1()	у	1.414	1.601	1.803	2.016	2.236	
1.(a)	At $x = 1.25$, $y = 1.601$ (only) $\begin{cases} 1.601 \text{ (May not be in the table and can score if seen as part of their working in (b))} \end{cases}$				B1 cao		
							B1; M1 A1ft
	B1; for using $\frac{1}{2} \times 0.25$ or equivalent.	or $\frac{1}{8}$	<u>M1: Stru</u> {	<u>icture of</u> }	as show	r the correct expression in following through te's y value found in	
(b)	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from $2()$ bracket this may be regarded as a slip and the M mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values. A1ft: for the correct underlined expression as shown following through candidate's y value found in part (a). Bracketing mistakes: e.g. $\left(\frac{1}{2} \times \frac{1}{4}\right) (1.414 + 2.236) + 2 \left(\text{their } 1.601 + 1.803 + 2.016\right) \left(=11.29625\right)$						
	$\left(\frac{1}{2} \times \frac{1}{4}\right)$ 1.414 + 2.236 + 2(their 1.601 + 1.803 + 2.016)(=13.25275) Both score B1 M1 A0 unless the final answer implies that the calculation has been done correctly (then full marks could be given).						
	Alternative: Separate trapezia may $\left[\frac{1}{8}(1.414+1.60)\right]$ B1 for $\frac{1}{8}$ (aef), M1 for	(1) (1) (1)	.601+1.803)	$+\frac{1}{8}(1.803)$	$+2.016)+\frac{1}{8}$		
	$\left\{ = \frac{1}{8}(14.49) \right\} = 1.8112$	25		1.81 or a	awrt 1.81		A1
			t answer <u>only</u>				
	If required accuracy	is not se	en in (a), full	marks can	still be score	d in (b) (e.g. uses 1.6)	142
							[4] Total 5
<u> </u>							100010

Question Number	Scheme		Marks
	If there is no labelling, ma	rk (a) and (b) in that order	
	$f(x) = 2x^3 - 7x^2 + 4x + 4$		
	$f(2) = 2(2)^3 - 7(2)^2 + 4(2) + 4$	Attempts $f(2)$ or $f(-2)$	M1
2. (a)	= 0, and so $(x - 2)$ is a factor.	$f(2) = 0$ with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0)$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or f(2)) is a factor. Note also that a conclusion can be implied from a preamble, eg: "If $f(2) = 0$, $(x - 2)$ is a factor"	A1
	Note: Long division scores no marks in	part (a). The <u>factor theorem</u> is required.	[2]
	$f(x) = \{(x-2)\}(2x^2 - 3x - 2)$	M1: Attempts long division by $(x-2)$ or other method using $(x-2)$, to obtain $(2x^2 \pm ax \pm b)$, $a \ne 0$, even with a remainder. Working need not be seen as this could be done "by inspection." A1: $(2x^2 - 3x - 2)$	[2] M1 A1
(b)	$= (x-2)(x-2)(2x+1)\operatorname{or}(x-2)^{2}(2x+1)$ or equivalent e.g. $= 2(x-2)(x-2)(x+\frac{1}{2})\operatorname{or}2(x-2)^{2}(x+\frac{1}{2})$	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors. A1: cao – needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.)	dM1 A1
	Note = $(x-2)(\frac{1}{2}x-1)(4x+2)$ would los	se the last mark as it is not fully factorised	
		y award full marks in (b)	
			[4]
			Total 6

Question Number	Scheme		
3. (a)	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
	$\left\{ (2-3x)^6 \right\} = (2)^6 + \frac{{}^6C_1}{}(2)^5$	$-3\underline{x}$) + $\frac{^{6}C_{2}}{(2)^{4}(-3\underline{x})^{2}}$ +	<u>M1</u>
	M1: $\binom{6}{1} \times \times x$ or $\binom{6}{1} \times \times x^2$. For <u>either</u> the x term <u>or</u> the x^2 term. Requires <u>correct</u>		
	binomial coefficient in any form with the co		
	coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms		
	can be "listed" rather than add ${}^{6}C_{1}2^{5} - 3x + {}^{6}C_{2}2^{4} - 3x^{2} + \dots$ Scores M0		
	$C_1 Z - 3x + C_2 Z - 3x + \dots$ Scores MO	A1: Either $-576x$ or $2160x^2$	1
		(Allow + $-576x$ here)	
	$= 64 - 576x + 2160x^2 + \dots$	A1: Both $-576x$ and $2160x^2$	A1A1
		(Do not allow $+ - 576x$ here)	
		(Do not anow + 370x nere)	[4]
(a) Way 2	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
		M1: $({}^{6}C_{1} \times \times x)$ or $({}^{6}C_{2} \times \times x^{2})$. For	
	$\left(1 - \frac{3}{2}x\right)^6 = 1 + \frac{{}^6C_1}{2}\left(\frac{-3}{2}\underline{x}\right) + \frac{{}^6C_2}{2}\left(\frac{-3}{2}\underline{x}\right)^2 + \frac{{}^6C_2}{2}\left($	either the x term or the x^2 term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or	<u>M1</u>
		missing. The terms can be "listed" rather than added. Ignore any extra terms.	
		A1: Either $-576x$ or $2160x^2$	
	$= 64 - 576x + 2160x^2 + \dots$	(Allow + -576x here)	A 1 A 1
	= 64 - 376x + 2160x +	A1: Both $-576x$ and $2160x^2$	A1A1
		(Do not allow $+ -576x$ here)	
(b)	Candidate writes down $\left(1+\frac{x}{2}\right)\times\left(\text{their part}\right)$	t (a) answer, at least up to the term in x).	
	(Condone missi	ing brackets)	
	$\left(1 + \frac{x}{2}\right) (64 - 576x +)$ or $\left(1 + \frac{x}{2}\right)$	$\left(\frac{x}{2}\right)\left(64 - 576x + 2160x^2 +\right)$ or	M1
	$\left(1+\frac{x}{2}\right)64 - \left(1+\frac{x}{2}\right)576x \text{ or } \left(1+\frac{x}{2}\right)$	$64 - \left(1 + \frac{x}{2}\right) 576x + \left(1 + \frac{x}{2}\right) 2160x^2$	
	or $64 + 32x, -576x - 288x^2$,	$2160x^2 + 1080x^3$ are fine.	
		A1: At least 2 terms correct as shown. (Allow $+ - 544x$ here)	
	$= 64 - 544x + 1872x^2 + \dots$	A1: $64 - 544x + 1872x^2$	A1A1
		The terms can be "listed" rather than	
		added. Ignore any extra terms.	[21
			[3] Total 7
	SC: If a candidate expands in descending po	wers of x, only the M marks are available	
	e.g. $\{(2-3x)^6\} = (-3x)^6 + {}_{6}C_{1}$	$(2)^{2}(-3\underline{x})^{5} + \frac{{}^{6}C_{2}(2)^{2}(-3\underline{x})^{4}}{} + \dots$	

Question Number	Scheme		
4.		M1: $x^n \to x^{n+1}$ A1: At least one of either $\frac{x^4}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$.	
	$\left(\int \left(x^3 + 1 \right)_{\mathrm{du}} \right) \qquad x^4 + x^{-1}$	A1: At least one of either $\frac{x^4}{6(4)}$ or $\frac{x^4}{(3)(-1)}$. A1: $\frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$ or equivalent.	N 1 A 1 A 1
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$		M1A1A1
		e.g. $\frac{x^4}{6} + \frac{x^{-1}}{3}$ (they will lose the final mark	
	NY A A LA	if they cannot deal with this correctly)	
	Note that some candidates may change $\int \frac{x^3}{6} + \frac{1}{3x^2} dx = \int 3x^5 + 6dx$ in which case all		
	function and allow the	M1 for limits if scored	
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \left(\frac{\left(\sqrt{3} \right)}{24} \right)$	$- + \frac{\left(\sqrt{3}\right)^{-1}}{-1(3)} - \left(\frac{\left(1\right)^{4}}{24} + \frac{\left(1\right)^{-1}}{-1(3)}\right)$	dM1
	2^{nd} dM1: For using limits of $\sqrt{3}$ and 1 on an int way round. The 2^{nd} M1 is dependent	tegrated expression and subtracting the correct ent on the 1 st M1 being awarded.	
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24} - \frac{1}{3}\right) = \frac{2}{3} - \frac{1}{9}\sqrt{3}$	$\frac{2}{3} - \frac{1}{9}\sqrt{3}$ or $a = \frac{2}{3}$ and $b = -\frac{1}{9}$. Allow equivalent fractions for a and/or b and 0.6 recurring and/or 0.1 recurring but do not allow $\frac{6-\sqrt{3}}{9}$	Alcso
	This final mark is cao and cso – there	e must have been no previous errors	
			Total 5
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \int \left(\frac{x^3}{6} + 3x \right) dx$	e^{-2} $dx = \frac{x^4}{6(4)} + \frac{3x^{-1}}{(-1)} M1A1A0$	
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{1}{3x^{2}} \right) dx $	$\frac{3\left(\sqrt{3}\right)^{-1}}{-1} - \left(\frac{\left(1\right)^4}{24} + \frac{3\left(1\right)^{-1}}{-1}\right) dM1$	
	$= \left(\frac{9}{24} - \frac{3}{\sqrt{3}}\right) - \left(\frac{1}{24} + \frac{3}{-1}\right) = \frac{10}{3} - \sqrt{3} \text{A0}$		
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \int \left(\frac{x^3}{6} + \left(3x \right)^{-2} \right) dx = \frac{x^4}{6(4)} + \frac{\left(3x \right)^{-1}}{(-1)} \text{ M1A1A0}$		
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{\left(3\sqrt{3}\right)^{-1}}{-1} \right) - \left(\frac{\left(1\right)^{4}}{24} + \frac{\left(3\times1\right)^{-1}}{-1} \right) dM 1$		
	$=\left(\frac{9}{24}-\frac{1}{3\sqrt{3}}\right)-\left(\frac{1}{24}\right)$	/ - /	
	Note this is the correct answer	r but follows incorrect work.	

Question Number	Scheme	2	Mark
5.(a)	$\Delta reg RDH = -(5)(1.4)$: Use of the correct formula or method for the a of the sector	M1A
	$= 17.5 \text{ (cm}^2)$ A1:	17.5 oe	
			[2
(b)	Parts (b) and (c) can be	marked together	
	$6.1^2 = 5^2 + 7.5^2 - (2 \times 5 \times 7.5 \cos DBC) \text{or} \cos DBC$	$DBC = \frac{3 + 7.5 - 6.1}{2 \times 5 \times 7.5}$ (or equivalent)	M1
	M1: A correct statement inv	olving the angle <i>DBC</i>	
)	t 0.943	A1
	Note that work for (b) may be seen	on the diagram or in part (c)	[2
(c)	Note that candidates may work in degrees i	(n (c) (Angle DBC = 54.04deg rees)	Į,
	$Area CBD = \frac{1}{2}5(7.1)$	5) sin(0.943)	
		ea $CBD = \frac{1}{2}5(7.5)\sin(\text{their } 0.943)$ or awrt	
	Angle $EBA = \pi - 1.4 - "0.943"$ 15.	2. (Note area of $CBD = 15.177$)	M1
_	whi	orrect method for the area of triangle <i>CBD</i> ich can be implied by awrt 15.2	1,11
	$\pi - 1.4$ – "their 0.943"		
	A value for angle <i>EBA</i> of awrt 0.8 (from 0.7985926536 or 0.7983916536) or value for angle		M1
	EBA of (1.74159 – their angle DBC) would imply this mark.		
	$AB = 5\cos(\pi - 1.4 - "0.943")$		
	or $AE = 5\sin(\pi - 1.4 - 0.943)$		
		$AB = 5\cos(\pi - 1.4 - \text{their } 0.943)$	
		$AB = 5\cos(0.79859) = 3.488577938$	
		Allow M1 for $AB = \text{awrt } 3.49$	
		Or $AE = 5\sin(\pi - 1.4 - \text{their } 0.943)$	
		$AE = 5\sin((3.79859)) = 3.581874365688$	
		Allow M1 for $AE = \text{awrt } 3.58$	M1
		It must be clear that $\pi - 1.4 - "0.943"$ is	
		being used for angle EBA.	
		Note that some candidates use the sin rule here but it must be used correctly – do not allow mixing of degrees and	
	Area $EAB = \frac{1}{2}5\cos(\pi - 1.4 - 0.943)$	radians. $3") \times 5\sin(\pi - 1.4 - "0.943")$	
	This is dependent on t	he previous M1	dM1
	and there must be no other errors in f		ulviii
	Allow M1 for area E Area $ABCDE = 15.17+17$		
	AICA ADCDE – 13.17+ 1		
		awrt 38.9	Alcs
	Note that a sign error in (b) can give the obtuse as answer in (c) – this would lose the final mark in (c)		Tot:

Question Number	Sc	cheme	Marks
6(a)	20	M1: Use of a correct S_{∞} formula	
	$S_{\infty} = \frac{20}{1 - \frac{7}{8}} \; ; = 160$	A1: 160	M1A1
	Accept correct	answer only (160)	
			[2]
(b)	20(1 (7)12)	M1: Use of a correct S_n formula with $n = 12$	
	$S_{12} = \frac{20(1-(\frac{7}{8})^{12})}{1-\frac{7}{8}}$; = 127.77324	(condone missing brackets around 7/8)	M1A1
	$1-\frac{7}{8}$	A1: awrt 127.8	
	T & I in (b) requires all 12 terms to be calc	ulated correctly for M1 and A1 for awrt 127.8	
			[2]
(c)		Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and	
	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{2}} < 0.5$	"uses" 0.5 and their S_{∞} at any point in their	M1
	$1 - \frac{7}{8}$	working. (condone missing brackets around	1.11
		$7/8$)(Allow =, <, >, \geq , \leq) but see note below.	
	$(7)^{N}$ $(7)^{N}$ (05)	Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $+\left(\frac{7}{8}\right)^N$ oe	
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	(Allow =, $<$, $>$, \ge , \le) but see note below.	dM1
	(0) (100)	Dependent on the previous M1	
		Uses the power law of logarithms or takes logs	
		base 0.875 correctly to obtain an equation or an inequality of the form	
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$		
		$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their S}_{\infty}}\right)$	M1
		or	M1
		$N > \log_{0.875} \left(\frac{0.5}{\text{their S}} \right)$	
		$N > \log_{0.875} \left(\frac{1}{\text{their } S_{\infty}} \right)$	
		(Allow =, $<$, $>$, \ge , \le) but see note below.	
	$N > \frac{\log(\frac{0.5}{160})}{\log(\frac{7}{9})} = 43.19823 \Rightarrow N = 44$	N = 44 (Allow, $N > 44$ but not $N > 44$	A.1. and
	$\frac{1}{\log\left(\frac{7}{8}\right)} = 43.19623 \implies 10 = 44$	1V - 44 (Allow 1V 244 but not 1V 244	A1 cso
		e in a candidate's working loses the final mark.	
		tion of the inequality is reversed in the final line	
	working seen.	full marks for using =, as long as no incorrect	
			[4]
			Total 8
	Trial & Im	provement Method in (c):	
	1^{st} M1: Attempts $160 - S_N$	or S_N with at least one value for $N > 40$	
	2 nd M1: Attempts 160	$0 - S_N$ or S_N with $N = 43$ or $N = 44$	
	3 rd M1: For evidence of examining 160 – S	S_N or S_N for both $N=43$ and $N=44$ with both	values
	correct to 2 DP		
	Eg: $160 - S_{43} = \text{awrt } 0.51 \text{ and } 160 - S_{44} = \text{awrt } 0.45$		
	or $S_{43} = \text{awrt } 159.49 \text{ and } S_{44} = \text{awrt } 159.55$		
	A	$A1: N = 44 \cos 0$	
	Answer of $N = 44$ onl	y with no working scores no marks	

Question Number	Sch	neme	Marks
	(i) $9\sin(\theta + 60^{\circ})$	$=4; 0 \le \theta < 360^{\circ}$	
7.		$x = 0; -\pi \le x < \pi$	
(i)	$\sin(\theta + 60^{\circ}) = \frac{4}{9}$, so $(\theta + 60^{\circ}) = 26.3877$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461°	M1
	$(\alpha = 26.3877)$	Can also be implied for $\theta = \text{awrt} - 33.6$ (i.e. 26.4 - 60)	WII
		$\theta + 60^{\circ}$ = either "180 – their α " or	
		" 360° + their α " and not for θ = either	
	So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$	" 180 – their α " or " 360° + their α ". This	M1
		can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.	
		A1: At least one of	
	and $\theta = \{93.6122, 326.3877\}$	awrt 93.6° or awrt 326.4°	A1 A1
	A1: Both awrt 93.6° and awrt 326.4°		
		nust come from correct work	
	Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1for any extra solutions in range		
	,	, and the second	[4]
(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	M1
	Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x (2 - 3\cos x)$		
	$2\sin x - 3\sin x \cos x = 0$		
	$\sin x(2-3\cos x)=0$		
	$\cos x = \frac{2}{3}$	$\cos x = \frac{2}{3}$	A1
		A1: One of either awrt 0.84 or awrt -0.84	
	$x = \text{awrt}\{0.84, -0.84\}$	Alft: You can apply ft for $x = \pm \alpha$, where	A1A1ft
		$\alpha = \cos^{-1} k$ and $-1 \le k \le 1$	
		ny extra answers in range in an otherwise withhold the A1ft.	
	correct solution	Both $x = 0$ and $-\pi$ or awrt -3.14 from	
	$\left\{\sin x = 0 \Rightarrow\right\} x = 0 \text{ and } -\pi$	sinx = 0 In this part of the solution, ignore extra solutions in range.	B1
	Note solutions are: $x = \{-3, 14\}$		
	Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the range		
	For all answers in degrees in (ii) M1A1A0A1ftB0 is possible		
	Allow the use of θ	in place of x in (ii)	
			[5] Total 9
			10tal 9

Question Number	Scheme			Marks
8.	Graph of $y = 3^x$ and solving	$3^{2x} - 9(3^x) + 18$		
(a)			the three criteria correct. notes below.)	B1
			e criteria correct. notes below.)	B1
	y ∱		er 1: Correct shape of and at least touches the	
			er 2: Correct shape of . Must not touch the x-	
	(0, 1)	axis or have any Criteria numb	y turning points. er 3: (0,1) stated or in	
	O x		ked on the y-axis. her than (0, 1) if	
		marked in the "axis.	correct" place on the y-	
	_			[2]
(b)	$(3^x)^2 - 9(3^x) + 18 = 0$		tic of the correct form in	
	or	3^x or in "y" whe	ere " y " = 3^x or even in x	M1
	$y = 3^x \implies y^2 - 9y + 18 = 0$	where " x " = 3^x		
	$y = 3^x \Rightarrow y^2 - 9y + 18 = 0$ { $(y-6)(y-3) = 0$ or $(3^x - 6)(3^x - 3) = 0$ }			
	$y = 6$, $y = 3$ or $3^x = 6$, $3^x = 3$	Both $y = 6$ and	y = 3.	A1
		A valid method	for solving $3^x = k$	
	$\left\{3^x = 6 \Rightarrow\right\} x \log 3 = \log 6$	where $k > 0$, $k = 0$		
	or $x = \frac{\log 6}{\log 3}$ or $x = \log_3 6$		$x \log 3 = \log k$ or	dM1
	$\log 3$	to give either	$x = \frac{\log k}{\log 3} \text{ or } x = \log_3 k$	
	x = 1.63092	awrt 1.63		Alcso
	Provided the first M1A1 is scored, the second			
	<i>x</i> = 1	x = 1 stated as a working.	a solution from <i>any</i>	B1
				[5]
				Total 7

Question Number	Scheme	Marks		
	Mark (a) and (b) together			
9. (a)	Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $\left(6\sqrt{5}\right)^2 + 4^2$ or $OQ = \sqrt{\left(6\sqrt{5}\right)^2 + 4^2}$ {= 14} (Working or 14 may be seen on the diagram)	M1		
	$y_Q = \sqrt{14^2 - 11^2}$ $y_Q = \sqrt{(\text{their } OQ)^2 - 11^2}$ Must include $\sqrt{\text{and is dependent on the first M1 and requires OQ} > 11}$	dM1		
	$=\sqrt{75} \text{ or } 5\sqrt{3} \qquad \qquad \sqrt{75} \text{ or } 5\sqrt{3}$	A1cso		
		[3]		
(b)	$(x-11)^2 + (y-5\sqrt{3})^2 = 16$ $M1: (x \pm 11)^2 + (y \pm \text{their } k)^2 = 4^2$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k . $A1: (x-11)^2 + (y-5\sqrt{3})^2 = 16$ or $(x-11)^2 + (y-5\sqrt{3})^2 = 4^2$ NB $5\sqrt{3}$ must come from correct work in (a) and allow awrt 8.66	M1A1		
	Allow in expanded form for the final A1			
	e.g. $x^2 - 22x + 121 + y^2 - 10\sqrt{3}y + 75 = 16$			
		[2] Total 5		
	Watch out for:			
	(a) $OQ = \sqrt{(6\sqrt{5})^2 + 4^2} = \sqrt{46} \text{ M1}$ $y_Q = \sqrt{46 - 11^2} \text{ M0 (OQ } < 11)$ $y_Q = \sqrt{75} \text{ A0}$ (b) $(x - 11)^2 + (y - 5\sqrt{3})^2 = 16 \text{ M1A0}$			

Question Number	Scheme		Marks	
10. (a)	$\frac{1}{2}(9x+6x)4x$ or $2x\times15x$ M1: Correct attempt at the area of a trapezium. or $\left(\frac{1}{2}4x\times(9x-6x)+6x\times4x\right)$ Or $6x^2+24x^2$ Or $\left(9x\times4x-\frac{1}{2}4x\times(9x-6x)\right)$ Or $36x^2-6x^2$ M1: Correct attempt at the area of a trapezium. Note that $30x^2$ on its own or $30x^2$ from incorrect work e.g. $5x\times6x$ is M0. If there is a clear intention to find the area of the trapezium correctly allow the M1 but the A1 can be withheld if there are any slips.		M1A1cso	
	$\Rightarrow 30x^2y = 9600 \Rightarrow y = \frac{9600}{30x^2} \Rightarrow y = \frac{320}{x^2} *$	A1: Correct proof with at least one intermediate step and no errors seen. " y =" is required.		
(1)			[2]	
(b)	$(S =) \frac{1}{2} (9x + 6x) 4x + \frac{1}{2} (9x + 6x) 4x + 6xy + 9xy + 5xy + 4xy$			
	M1: An attempt to find the area of six faces of the prism. The 2 trapezia may be combined as			
	$(9x + 6x)4x$ or $60x^2$ and the 4 other faces may be combined as $24xy$ but all six faces must be			
	included. There must be attempt at the areas of two trapezia that are dimensionally correct. A1: Correct expression in any form.			
	Allow just $(S =) 60x^2 +$	24xy for M1A1		
	$y = \frac{320}{x^2} \Rightarrow (S =) 30x^2 + 3$	$30x^2 + 24x\left(\frac{320}{x^2}\right)$	M1	
	Substitutes $y = \frac{320}{x^2}$ into their expression for S (may be done earlier). S should have at least			
	one x^2 term and one xy term but there may be other terms which may be dimensionally incorrect.			
	So, $(S =) 60x^2 + \frac{7680}{x} *$	Correct solution only. "S = " is not required here.	A1* cso	
			[4]	

10(c)	$\frac{dS}{dx} = 120x - 7680x^{-2} \left\{ = 120x - \frac{7680}{x^2} \right\}$	M1: Either $60x^2 \rightarrow 120x$ or $\frac{7680}{x} \rightarrow \frac{\pm \lambda}{x^2}$ A1: Correct differentiation (need not be	M1
		simplified).	A1 aef
	$120x - \frac{7680}{x^2} = 0$ $\Rightarrow x^3 = \frac{7680}{120}; = 64 \Rightarrow x = 4$	M1: $S' = 0$ and "their $x^3 = \pm$ value" or "their $x^{-3} = \pm$ value" Setting their $\frac{dS}{dx} = 0$ and "candidate's ft <u>correct</u> power of $x = a$ value". The power of x must be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S' = 0$ can be implied by $120x = \frac{7680}{x^2}$. Some may spot that $x = 4$ gives $S' = 0$ and provided they clearly show $S'(4) = 0$ allow this mark as long as S' is correct. (If S' is incorrect this method is allowed if their derivative is clearly zero for their value of x) Note that the value of x is not explicitly required so the use of $x = \sqrt[3]{64}$ to give $S = 2880$ would imply this mark.	M1A1cso
	Note some candidates stop here and de	o not go on to find S – maximum mark is $4/6$	
	$\{x=4,\}$	Substitute candidate's value of $x \neq 0$ into a formula for S. Dependent on both previous M marks.	ddM1
	$S = 60(4)^2 + \frac{7680}{4} = 2880 \text{ (cm}^2\text{)}$	2880 cso (Must come from correct work)	A1 cao and cso
			[6]

10(d)	M1: Attempt $S''(x^n \to x^{n-1})$ and considers	
10(u)	sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 $\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow \text{Minimum}$ Requires a <u>correct</u> second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) <u>and</u> a valid reason (e.g. > 0), <u>and</u> conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been <u>evaluated</u> incorrectly.	M1A1ft
	A correct S'' followed by $S''("4") = "360"$ therefore minimum would score no marks in (d)	
	A correct S'' followed by $S''("4") = "360"$ which is positive therefore minimum would score	
	both marks	
		[2]
	Note parts (c) and (d) can be marked together.	
		Total 14