Paper Reference(s)
6664/01

Edexcel GCE

Core Mathematics C2

Advanced Subsidiary

Friday 24 May 2013 - Morning

Time: 1 hour 30 minutes

Materials required for examination

Items included with question papers
Mathematical Formulae (Pink) Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables’ is provided.
Full marks may be obtained for answers to ALL questions.
There are 10 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. The first three terms of a geometric series are

$$
18,12 \text { and } p
$$

respectively, where p is a constant.
Find
(a) the value of the common ratio of the series,
(b) the value of p,
(c) the sum of the first 15 terms of the series, giving your answer to 3 decimal places.
(2)
2. (a) Use the binomial theorem to find all the terms of the expansion of

$$
(2+3 x)^{4} .
$$

Give each term in its simplest form.
(b) Write down the expansion of

$$
(2-3 x)^{4}
$$

in ascending powers of x, giving each term in its simplest form.
3.

$$
\mathrm{f}(x)=2 x^{3}-5 x^{2}+a x+18
$$

where a is a constant.
Given that $(x-3)$ is a factor of $f(x)$,
(a) show that $a=-9$,
(b) factorise $\mathrm{f}(x)$ completely.

Given that

$$
g(y)=2\left(3^{3 y}\right)-5\left(3^{2 y}\right)-9\left(3^{y}\right)+18
$$

(c) find the values of y that satisfy $g(y)=0$, giving your answers to 2 decimal places where appropriate.
4.

$$
y=\frac{5}{\left(x^{2}+1\right)}
$$

(a) Copy and complete the table below, giving the missing value of y to 3 decimal places.

x	0	0.5	1	1.5	2	2.5	3
y	5	4	2.5		1	0.690	0.5

Figure 1
Figure 1 shows the region R which is bounded by the curve with equation $y=\frac{5}{\left(x^{2}+1\right)}$, the x-axis and the lines $x=0$ and $x=3$.
(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for the area of R.
(c) Use your answer to part (b) to find an approximate value for

$$
\int_{0}^{3} 4+\frac{5}{\left(x^{2}+1\right)} d x
$$

giving your answer to 2 decimal places.
5.

Figure 2
Figure 2 shows a plan view of a garden.
The plan of the garden $A B C D E A$ consists of a triangle $A B E$ joined to a sector $B C D E$ of a circle with radius 12 m and centre B.

The points A, B and C lie on a straight line with $A B=23 \mathrm{~m}$ and $B C=12 \mathrm{~m}$.
Given that the size of angle $A B E$ is exactly 0.64 radians, find
(a) the area of the garden, giving your answer in m^{2}, to 1 decimal place,
(b) the perimeter of the garden, giving your answer in metres, to 1 decimal place.
6.

Figure 3
Figure 3 shows a sketch of part of the curve C with equation

$$
y=x(x+4)(x-2) .
$$

The curve C crosses the x-axis at the origin O and at the points A and B.
(a) Write down the x-coordinates of the points A and B.

The finite region, shown shaded in Figure 3, is bounded by the curve C and the x-axis.
(b) Use integration to find the total area of the finite region shown shaded in Figure 3.
7. (i) Find the exact value of x for which

$$
\begin{equation*}
\log _{2}(2 x)=\log _{2}(5 x+4)-3 \tag{4}
\end{equation*}
$$

(ii) Given that

$$
\log _{a} y+3 \log _{a} 2=5,
$$

express y in terms of a.
Give your answer in its simplest form.
8. (i) Solve, for $-180^{\circ} \leq x<180^{\circ}$,

$$
\tan \left(x-40^{\circ}\right)=1.5
$$

giving your answers to 1 decimal place.
(ii) (a) Show that the equation

$$
\sin \theta \tan \theta=3 \cos \theta+2
$$

can be written in the form

$$
\begin{equation*}
4 \cos ^{2} \theta+2 \cos \theta-1=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$,

$$
\sin \theta \tan \theta=3 \cos \theta+2
$$

showing each stage of your working.
9. The curve with equation

$$
y=x^{2}-32 \sqrt{ } x+20, \quad x>0
$$

has a stationary point P.
Use calculus
(a) to find the coordinates of P,
(b) to determine the nature of the stationary point P.
10.

Figure 4
The circle C has radius 5 and touches the y-axis at the point (0,9), as shown in Figure 4.
(a) Write down an equation for the circle C, that is shown in Figure 4.

A line through the point $P(8,-7)$ is a tangent to the circle C at the point T.
(b) Find the length of $P T$.

Question Number	Scheme \quad Marks
2. (a)	$\begin{aligned} & (2+3 x)^{4} \text { - Mark (a) and (b) together } \\ & 2^{4}+{ }^{4} C_{1} 2^{3}(3 x)+{ }^{4} C_{2} 2^{2}(3 x)^{2}+{ }^{4} C_{3} 2^{1}(3 x)^{3}+(3 x)^{4} \end{aligned}$ First term of 16 $\begin{aligned} & \left({ }^{4} C_{1} \times \ldots \times x\right)+\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{4} C_{3} \times \ldots \times x^{3}\right)+\left({ }^{4} C_{4} \times \ldots \times x^{4}\right) \\ & =(16+) 96 x+216 x^{2}+216 x^{3}+81 x^{4} \quad \text { Must use Binomial }- \text { otherwise A0, } \end{aligned}$ $(2-3 x)^{4}=16-96 x+216 x^{2}-216 x^{3}+81 x^{4}$
Alternative method (a)	$\begin{aligned} & (2+3 x)^{4}=2^{4}\left(1+\frac{3 x}{2}\right)^{4} \\ & 2^{4}\left(1+{ }^{4} C_{1}\left(\frac{3 x}{2}\right)+{ }^{4} C_{2}\left(\frac{3 x}{2}\right)^{2}+{ }^{4} C_{3}\left(\frac{3 x}{2}\right)^{3}+\left(\frac{3 x}{2}\right)^{4}\right) \end{aligned}$ Scheme is applied exactly as before
	Notes for Question 2
(a) (b)	B1: The constant term should be 16 in their expansion M1: Two binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{4} C_{1}$ or $\binom{4}{1}$ or 4 as a coefficient, and ${ }^{4} C_{2}$ or $\binom{4}{2}$ or 6 as another........ Pascal's triangle may be used to establish coefficients. A1: Any two of the final four terms correct (i.e. two of $96 x+216 x^{2}+216 x^{3}+81 x^{4}$) in expansion following Binomial Method. A1: All four of the final four terms correct in expansion. (Accept answers without + signs, can be listed with commas or appear on separate lines) B1ft: Award for correct answer as printed above or ft their previous answer provided it has five terms ft and must be subtracting the x and x^{3} terms Allow terms in (b) to be in descending order and allow $+-96 x$ and $+-216 x^{3}$ in the series. (Accept answers without + signs, can be listed with commas or appear on separate lines)
	e.g. The common error $2^{4}+{ }^{4} C_{1} 2^{3} 3 x+{ }^{4} C_{2} 2^{2} 3 x^{2}+{ }^{4} C_{3} 2^{1} 3 x^{3}+3 x^{4}=(16)+96 x+72 x^{2}+24 x^{3}+3 x^{4}$ would earn B1, M1, A0, A0, and if followed by $=(16)-96 x+72 x^{2}-24 x^{3}+3 x^{4}$ gets B1ft so 3/5 Fully correct answer with no working can score B1 in part (a) and B1 in part (b). The question stated use the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be earned. Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so 3/5 If the series is divided through by 2 or a power of 2 at the final stage after an error or omission resulting in all even coefficients then apply scheme to series before this division and ignore subsequent work (isw)

Question Number	Scheme	Marks
6. (a)	Seeing -4 and 2.	B1 ${ }^{\text {(1) }}$
(b)	$x(x+4)(x-2)=\underline{x^{3}+2 x^{2}-8 x} \quad$ or $\underline{x^{3}-2 x^{2}+4 x^{2}-8 x}$ (without simplifying)	B1
	$\int\left(x^{3}+2 x^{2}-8 x\right) \mathrm{d} x=\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\{+c\} \quad \text { or } \frac{x^{4}}{4}-\frac{2 x^{3}}{3}+\frac{4 x^{3}}{3}-\frac{8 x^{2}}{2}\{+c\}$	M1A1ft
	$\left[\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\right]_{-4}^{0}=(0)-\left(64-\frac{128}{3}-64\right) \text { or }\left[\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\right]_{0}^{2}=\left(4+\frac{16}{3}-16\right)-(0)$	dM1
	One integral $= \pm 42 \frac{2}{3}$ (42.6 or awrt 42.7) or other integral $= \pm 6 \frac{2}{3}$ (6.6 or awrt 6.7)	A1
	$\text { Hence Area }=\text { "their } 42 \frac{2}{3} \text { " }+ \text { "their } 6 \frac{2}{3} \text { " or } \quad \text { Area }=\text { "their } 42 \frac{2}{3} \text { " }- \text { "-their } 6 \frac{2}{3} \text { " }$	dM1
	$=49 \frac{1}{3} \text { or } 49.3 \text { or } \frac{148}{3} \quad\left(\text { NOT }-\frac{148}{3}\right)$	A1
	(An answer of $=49 \frac{1}{3}$ may not get the final two marks - check solution carefully)	7)
	Notes for Question 6	
(a)	B1: Need both -4 and 2. May see $(-4,0)$ and (2,0) (correct) but allow $(0,-4)$ and $(0,2)$ or $A=-4$, indeed any indication of -4 and 2 - check graph also	$2 \text { or }$
(b)	B1: Multiplies out cubic correctly (terms may not be collected, but if they are, mark collected terms here) M1: Tries to integrate their expansion with $x^{n} \rightarrow x^{n+1}$ for at least one of the terms	
	A1ft: completely correct integral following through from their CUBIC expansion (if only quadratic or quartic this is A0)	
	dM1: (dependent on previous M) substituting EITHER - a and 0 and subtracting either way round OR similarly for 0 and b. If their limits $\boldsymbol{- a}$ and \boldsymbol{b} are used in ONE integral, apply the Special Case below.	
	A1: Obtain either $\pm 42 \frac{2}{3}$ (or 42.6 or awrt 42.7)from the integral from -4 to 0 or $\pm 6 \frac{2}{3}$ (6.6 or awrt 6.7)	
	from the integral from 0 to 2; NO follow through on their cubic (allow decimal or improper equivalents	
	$\frac{128}{3}$ or $\frac{20}{3}$) isw such as subtracting from rectangles. This will be penalized in the next two marks,	
	dM1 (depends on first method mark) Correct method to obtain shaded area so adds two positive numbers (areas) together or uses their positive value minus their negative value, obtained from two	
	For full marks on this question there must be two definite integrals, from -4 to 0 and from 0 to 2 , though the evaluations for 0 may not be seen.	
(b)	Special Case: one integral only from -a to b: B1M1A1 available as before, then	
	$\left.\frac{x}{4}+\frac{2 x^{x}}{3}-\frac{8 x^{2}}{2}\right]=\left(4+\frac{16}{3}-16\right)-\left(64-\frac{128}{3}-64\right)=-6 \frac{2}{3}+42 \frac{2}{3}=\ldots$. dM1 for correct use of their	
	limits - a and b and subtracting either way round. A1 for 36: NO follow through. Final M and A marks not available. Max 5/7 for part (b)	

Question Number	Scheme	Marks
$\begin{gathered} \text { 7. (i) } \\ \text { Method } 1 \end{gathered}$	$\begin{aligned} & \log _{2}\left(\frac{2 x}{5 x+4}\right)=-3 \text { or } \log _{2}\left(\frac{5 x+4}{2 x}\right)=3, \text { or } \log _{2}\left(\frac{5 x+4}{x}\right)=4 \text { (see special case 2) } \\ & \left(\frac{2 x}{5 x+4}\right)=2^{-3} \text { or }\left(\frac{5 x+4}{2 x}\right)=2^{3} \text { or }\left(\frac{5 x+4}{x}\right)=2^{4} \text { or }\left(\log _{2}\left(\frac{2 x}{5 x+4}\right)\right)=\log _{2}\left(\frac{1}{8}\right) \\ & 16 x=5 x+4 \Rightarrow x=\text { (depends on previous Ms and must be this equation or equivalent) } \\ & \quad x=\frac{4}{11} \text { or exact recurring decimal } 0.3 \dot{6} \text { after correct work } \end{aligned}$	M1 M1 dM1 A1 cso (4)
	$\log _{2}(2 x)+3=\log _{2}(5 x+4)$ So $\log _{2}(2 x)+\log _{2}(8)=\log _{2}(5 x+4) \quad\left(3\right.$ replaced by $\left.\log _{2} 8\right)$ Then $\log _{2}(16 x)=\log _{2}(5 x+4)$ (addition law of logs) Then final M1 A1 as before	$\begin{aligned} & 2^{\text {nd }} \text { M1 } \\ & 1^{\text {st }} \text { M1 } \\ & \text { dM1A1 } \\ & \hline \end{aligned}$
(ii)	$\begin{aligned} & \log _{a} y+\log _{a} 2^{3}=5 \\ & \log _{a} 8 y=5 \\ & y=\frac{1}{8} a^{5} \end{aligned}$ Applies product law of logarithms. $y=\frac{1}{8} a^{5}$	M1 dM1 A1cao
	Notes for Question 7	
(i) (ii)	$1^{\text {st }} \mathrm{M} 1$: Applying the subtraction or addition law of logarithms correctly to make two \log terms in \boldsymbol{x} into one \log term in x $2^{\text {nd }}$ M1: For RHS of either $2^{-3}, 2^{3}, 2^{4}$ or $\log _{2}\left(\frac{1}{8}\right), \log _{2} 8$ or $\log _{2} 16$ i.e. using connection between log base 2 and 2 to a power. This may follow an earlier error. Use of 3^{2} is M0 $3^{\text {rd }} \mathrm{dM} 1$: Obtains correct linear equation in x. usually the one in the scheme and attempts $x=$ A1: cso Answer of $4 / 11$ with no suspect \log work preceding this. M1: Applies power law of $\operatorname{logarithms~to~replace~} 3 \log _{a} 2$ by $\log _{a} 2^{3}$ or $\log _{a} 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log _{a} 2^{3} y=5$ or $\log _{a} 8 y=5$	
(i)	$\begin{aligned} & \text { Special case 1: } \log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \frac{\log _{2}(2 x)}{\log _{2}(5 x+4)}=-3 \Rightarrow \frac{2 x}{5 x+4}=2^{-3} \Rightarrow x=\frac{4}{11} \text { or } \\ & \log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \frac{\log _{2}(2 x)}{\log _{2}(5 x+4)}=-3 \Rightarrow \log _{2} \frac{2 x}{5 x+4}=-3 \Rightarrow \frac{2 x}{5 x+4}=2^{-3} \Rightarrow x=\frac{4}{11} \text { each } \\ & \text { attempt scores M0M1M1A0 }- \text { special case } \end{aligned}$	
	Special case 2: $\log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \log _{2} 2+\log _{2} x=\log _{2}(5 x+4)-3$, is M0 until the two \log terms are combined to give $\log _{2}\left(\frac{5 x+4}{x}\right)=3+\log _{2} 2$. This earns M1 Then $\left(\frac{5 x+4}{x}\right)=2^{4}$ or $\log _{2}\left(\frac{5 x+4}{x}\right)=\log _{2} 2^{4}$ gets second M1. Then scheme as before.	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 8. (i) \& \((|\alpha|=56.3099 \ldots)\)
\(x=\{\alpha+40=96.309993 .\}=\). awrt 96.3
\(x-40^{\circ}=-180+56.3099 " . .\).
\(x=\{-180+56.3099 . .+40=-83.6901 \ldots\}=\) awrt -83.7 \& B1
M1
A1 \\
\hline (ii)(a) \& \[
\begin{aligned}
\sin \theta\left(\frac{\sin \theta}{\cos \theta}\right) \& =3 \cos \theta+2 \\
\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right) \& =3 \cos \theta+2 \\
1-\cos ^{2} \theta \& =3 \cos ^{2} \theta+2 \cos \theta \quad \Rightarrow 0=4 \cos ^{2} \theta+2 \cos \theta-1
\end{aligned}
\] \& \begin{tabular}{l}
(3) \\
M1 \\
dM1 \\
A1 cso *
\end{tabular} \\
\hline (b) \& \begin{tabular}{l}
\[
\cos \theta=\frac{-2 \pm \sqrt{4-4(4)(-1)}}{8}
\] \\
or \(4\left(\cos \theta \pm \frac{1}{4}\right)^{2} \pm q \pm 1=0\), or \(\left(2 \cos \theta \pm \frac{1}{2}\right)^{2} \pm q \pm 1=0, q \neq 0\) so \(\cos \theta=\) One solution is \(72^{\circ}\) or \(144^{\circ}\), Two solutions are \(72^{\circ}\) and \(144^{\circ}\) \(\theta=\{72,144,216,288\}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1, A1 \\
M1 A1
(5)
[11]
\end{tabular} \\
\hline \& \multicolumn{2}{|l|}{Notes for Question 8} \\
\hline (i)

(ii) (a) \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| B1: 96.3 by any or no method |
| :--- |
| M1: Takes 180 degrees from arctan (1.5) or from their " 96.3 " May be implied by A1. (Could be obtained by adding 180 , then subtracting 360). |
| A1: awrt -83.7 |
| Extra answers: ignore extra answers outside range. Any extra answers in range lose final A mark (if earned) |
| Working in radians - could earn M1 for $x-40^{\circ}=-\pi+" 0.983 " . .$. so B0M1A0 |
| M1: uses $\tan \theta=\frac{\sin \theta}{\cos \theta}$ or equivalent in equation |
| (not just $\tan =\frac{\sin }{\cos }$, with no argument) |
| dM 1 : uses $\sin ^{2} \theta=1-\cos ^{2} \theta$ (quoted correctly) in equation |
| A1: completes proof correctly, with no errors to give printed answer*. Need at least three steps in proof and need to achieve the correct quadratic with all terms on one side and "=0" |
| M1: Attempts to solve quadratic by correct quadratic formula, or completion of the square . Factorisation attempts score M0. |
| $1^{\text {st }}$ A1: Either 72 or 144, $2^{\text {nd }}$ A1: both 72 and 144 (allow 72.0 etc.) |
| M1: 360 - "a previous solution" (provided that cos was being used) (not dependent on previous M) |
| A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - ignore) (Premature approximation: e.g. 71.9, 144.1, 288.1 and 215.9 - lose first A1 then ft other angles) |
| Do not require degrees symbol for the marks |
| Special case: Working in radians |
| M1: as before, A1 for either $\theta=\frac{2}{5} \pi$ or $\theta=\frac{4}{5} \pi$ or decimal equivalents, and $2^{\text {nd }} \mathrm{A} 1$: both |
| M1: $2 \pi-\alpha_{1}$ or $2 \pi-\alpha_{2}$ then A0 so $4 / 5$ |}}

\hline (b) \& \&

\hline
\end{tabular}

Question Number	Scheme	Marks
10. (a) (b)	Equation of form $(x \pm 5)^{2}+(y \pm 9)^{2}=k, \quad k>0$ Equation of form $(x-a)^{2}+(y-b)^{2}=5^{2}$, with values for a and b $(x+5)^{2}+(y-9)^{2}=25=5^{2}$ $P(8,-7)$. Let centre of circle $=X(-5,9)$ $P X^{2}=(8-"-5 ")^{2}+(-7-" 9 ")^{2} \text { or } P X=\sqrt{(8--5)^{2}+(-7-9)^{2}}$ $(P X=\sqrt{425}$ or $5 \sqrt{17}) \quad P T^{2}=(P X)^{2}-5^{2}$ with numerical $P X$ PT $\{=\sqrt{400}\}=20 \quad$ (allow 20.0)	$\begin{array}{\|lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \text { (3) } \\ \text { M1 } & \\ \text { M1 } & \\ \text { dM1 } & \\ \text { A1 cso } & \\ & \text { (3) } \\ \hline \end{array}$
Alternative 2 for (a)	Equation of the form $x^{2}+y^{2} \pm 10 x \pm 18 y+c=0$ Uses $a^{2}+b^{2}-5^{2}=c$ with their a and b or substitutes $(0,9)$ giving $+9^{2} \pm 2 b \times 9+c=0$ $x^{2}+y^{2}+10 x-18 y+81=0$	M1 M1 A1 (3)
Alternative 2 for (b)	An attempt to find the point T may result in pages of algebra, but solution needs to reach $(-8,5)$ or $\left(\frac{-8}{17}, 11 \frac{2}{17}\right)$ to get first M1 (even if gradient is found first) M1: Use either of the correct points with $P(8,-7)$ and distance between two points formula A1: 20	M1 dM1 A1cso (3)
Alternative 3 for (b)	Substitutes (8, -7) into circle equation so $P T^{2}=8^{2}+(-7)^{2}+10 \times 8-18 \times(-7)+81$ Square roots to give $P T\{=\sqrt{400}\}=20$	M1 dM1A1 (3)
	Notes for Question 10	
(a) (b)	The three marks in (a) each require a circle equation - (see special cases which are not circles) M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^{2} or $k>0$ or a positive value) M1: Uses $r=5$ to obtain RHS of circle equation as 25 or 5^{2} A1: correct circle equation in any equivalent form Special cases $(x \pm 5)^{2}+(x \pm 9)^{2}=\left(5^{2}\right)$ is not a circle equation so M0M0A0 Also $(x \pm 5)^{2}+(y-9)=\left(5^{2}\right)$ And $(x \pm 5)^{2}-(y \pm 9)^{2}=\left(5^{2}\right)$ are not circles and gain M0M0A0 But $(x-0)^{2}+(y-9)^{2}=5^{2}$ gains M0M1A0 M1: Attempts to find distance from their centre of circle to P (or square of this value). If this is called $P T$ and given as answer this is M0. Solution may use letter other than X, as centre was not labelled in the question. N.B. Distance from $(0,9)$ to $(8,-7)$ is incorrect method and is M0, followed by M0A0. dM1: Applies the subtraction form of Pythagoras to find $P T$ or $P T^{2}$ (depends on previous method mark for distance from centre to \boldsymbol{P}) or uses appropriate complete method involving trigonometry A1: 20 cso	

