Paper Reference(s) 66664/01 Edexcel GCE

Core Mathematics C2

Advanced Subsidiary

Monday 14 January 2013 – Morning

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation or integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. Find the first 3 terms, in ascending powers of *x*, in the binomial expansion of

 $(2-5x)^6$.

Give each term in its simplest form.

$f(x) = ax^3 + bx^2 - 4x - 3$, where <i>a</i> and <i>b</i> are constants.	
Given that $(x - 1)$ is a factor of $f(x)$,	
(a) show that $a + b = 7$.	
Given also that, when $f(x)$ is divided by $(x + 2)$, the remainder is 9,	(2)
(b) find the value of a and the value of b , showing each step in your working.	(4)
(a) Show that the predicted profit in the year 2016 is £138 915.	(1)
(b) Find the first year in which the yearly predicted profit exceeds $\pounds 200\ 000$.	(5)
(c) Find the total predicted profit for the years 2013 to 2023 inclusive, giving your and	swer to the
	 Given that (x - 1) is a factor of f(x), (a) show that a + b = 7. Given also that, when f(x) is divided by (x + 2), the remainder is 9, (b) find the value of a and the value of b, showing each step in your working. A company predicts a yearly profit of £120 000 in the year 2013. The company predict yearly profit will rise each year by 5%. The predicted yearly profit forms a geometric with common ratio 1.05. (a) Show that the predicted profit in the year 2016 is £138 915.

4. Solve, for $0 \le x < 180^{\circ}$,

$$\cos(3x-10^\circ) = -0.4$$
,

giving your answers to 1 decimal place. You should show each step in your working.

(7)

(4)

5. The circle <i>C</i> has equatio	n
------------------------------------	---

$$x^2 + y^2 - 20x - 24y + 195 = 0$$

The centre of *C* is at the point *M*.

<i>(a)</i>	Find
(0)	1 1110

- (i) the coordinates of the point M,
- (ii) the radius of the circle C. (5)

N is the point with coordinates (25, 32).

(*b*) Find the length of the line *MN*.

The tangent to C at a point P on the circle passes through point N.

- (c) Find the length of the line NP.
- 6. Given that $2 \log_2(x+15) \log_2 x = 6$,

(a) show that $x^2 - 34x + 225 = 0$.	
	(5)
(b) Hence, or otherwise, solve the equation $2 \log_2(x+15) - \log_2 x = 6$.	
	(2)

(2)

(2)

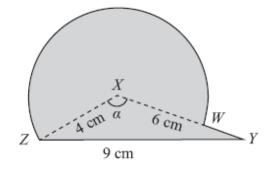


Figure 2

The triangle *XYZ* in Figure 1 has XY = 6 cm, YZ = 9 cm, ZX = 4 cm and angle $ZXY = \alpha$. The point *W* lies on the line *XY*.

The circular arc ZW, in Figure 1 is a major arc of the circle with centre X and radius 4 cm.

(a) Show that, to 3 significant figures, $\alpha = 2.22$ radians.

(b) Find the area, in cm^2 , of the major sector XZWX.

The region enclosed by the major arc ZW of the circle and the lines WY and YZ is shown shaded in Figure 1.

Calculate

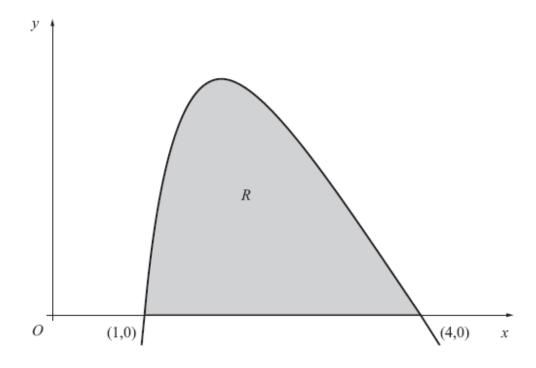
- (c) the area of this shaded region, (3)
- (d) the perimeter ZWYZ of this shaded region.

(4)

(3)

(2)

- 8. The curve C has equation $y = 6 3x \frac{4}{x^3}$, $x \neq 0$.
 - (a) Use calculus to show that the curve has a turning point P when $x = \sqrt{2}$.


(4)

(1)

(b) Find the x-coordinate of the other turning point Q on the curve.

(c) Find $\frac{d^2 y}{dx^2}$. (1)

(d) Hence or otherwise, state with justification, the nature of each of these turning points P and Q.(3)

The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$y = 27 - 2x - 9\sqrt{x} - \frac{16}{x^2}, \quad x > 0.$$

The curve crosses the x-axis at the points (1, 0) and (4, 0).

(a) Copy and complete the table below, by giving your values of y to 3 decimal places.

x	1	1.5	2	2.5	3	3.5	4	
у	0	5.866		5.210		1.856	0	
								(2)

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of R, giving your answer to 2 decimal places.

(4)

(c) Use integration to find the exact value for the area of *R*.

(6)

TOTAL FOR PAPER: 75 MARKS

END

9.

January 2013 6664 Core Mathematics C2 Mark Scheme

Question Number	Sch	eme	Marks	
1.	(2-	$(5x)^6$		
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1	
	$+6 \times (2)^{5} (-5x) + \frac{6 \times 5}{2} (2)^{4} (-5x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times (2)^{6-p} (-5x)^p \text{ with } p = 1 \text{ or } p = 2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. ${}^{6}C_1 \text{ or } \binom{6}{1} \text{ or even } \left(\frac{6}{1}\right)$	M1	
	-960x	Do not allow $+-960x$	A1 (first)	
	$(+)6000x^2$	Allow this to come from $(5x)^2$	A1 (Second)	
	Ignore any extra terms and isw e.g. divides all terms by 2 The terms do not have to form a sum i.e. they can be listed with commas or given on separate lines.			
	Special Case - decreasing powers can score M1 with the conditions as above for the second and third terms.			
	$(2-5x)^6 = 64 + \binom{6}{1}(2^5-5x) + \binom{6}{2}$			
	powers of 2 and (-5x) are b Fully correct answer with no working can s term is correct, the M1 can be impl			
			(4)	
Way 2	64(1±)	64 and $(1 \pm \dots - Award when first seen.$	B1	
	$\left(1-\frac{5x}{2}\right)^6 = 1\underline{-6\times\frac{5x}{2}} + \underline{\frac{6\times5}{2}\left(-\frac{5x}{2}\right)^2}$	Correct structure for at least one of the underlined terms. E.g. a term of the form: $\binom{6}{p} \times (kx)^{p} \text{ with } p = 1 \text{ or } p = 2$ consistently and $k \neq \pm 5$ Condone sign errors. Condoned missing brackets if later work implies correct structure but it must be an expansion of $(1-kx)^{6}$ where $k \neq \pm 5$	M1	
	-960x	Do not allow $+-960x$	A1	
	$(+)6000x^2$	Allow this to come from $\left(\frac{5x}{2}\right)^2$	A1	
			(4)	

Question Number	Scheme		Marks
2.			
(a)	f(1) = a + b - 4 - 3 = 0 or $a + b - 7 = 0$	Attempt f(±1)	M1
	a + b = 7 *	Must be $f(1)$ and $= 0$ needs to be seen	A1
			(2)
(b)	f(-2) = $a(-2)^3 + b(-2)^2 - 4(-2) - 3 = 9$	Attempt $f(\pm 2)$ and uses $f(\pm 2) = 9$	M1
	-8a + 4b + 8 - 3 = 9	Correct equation with exponents of (-2) removed	A1
	(-8a + 4b = 4)		
	Solves the given equation from part (a)		
	and their equation in <i>a</i> and <i>b</i> from part		M1
	(b) as far as $a = \dots$ or $b = \dots$	D	
	a = 2 and $b = 5$	Both correct	A1
	Attempts at trial and improvement in (b		
	values for a and b where $a + b = 7$ and su		
	along with $x = \pm 2$ and sets = 9. For complete to be correct ellow $4/4$. For incomplete to be		
	to be correct allow 4/4. For incomplete of M1 only. If in doubt consult your team l		
	Wi only. If in doubt consult your team is		(4)
			(4) [6]
	Long Divis	sion	[U]
	$(ax^3 + bx^2 - 4x - 3) \div (x - 4x - 3)$		
	$\left(ax + bx - 4x - 3 \right) \div (x - 4x - 3)$	(-1) = ax + px + q	
(a)	where p and q are in terms	M1	
(a)	and sets their remainder =	111	
	NB Quotient = $ax^2 + (a + a)$		
			A 1
	a + b = 7	*	A1 (2)
		-> 2	(2)
	$\left(ax^3+bx^2-4x-3\right)\div\left(x+2x^2-4x-3\right)$	$2) = ax^2 + px + q$	
	where p and q are in terms o	f <i>a</i> or <i>b</i> or both	
(b)	and sets their remainder $=$		M1
	NB Quotient = $ax^2 + (b-2)$		
	4b - 8a + 5		A1
	Follow scheme for t		

Question Number		Scheme	Marks
3.			
(a)	$120000 \times (1.05)^3 = 138915 *$	Or $120000 \times 1.05 \times 1.05 \times 1.05 = 138915$ Or $120000, 126000, 132000, 138915$ Or $a = 120000$ and $a \times (1.05)^3 = 138915$	B1
			(1)
(b)	$120000 \times (1.05)^{n-1} > 200000$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1
	$\log 1.05^{n-1} > \log\left(\frac{5}{3}\right)$	Takes logs correctly Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ e.g $(n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc. Allow 1.6 or awrt 1.67 for 5/3.	A1
		M1: Identifies a calendar year using their value	
	2024	of <i>n</i> or <i>n</i> - 1	M1A1
		A1: 2024 only cso	
	2024 with		
		king logs base 1.05 and mis-read as total profit	
	bee appendin for alternative a	ining logo ouse free and this foud us court protection	(5
	$\frac{a(1-r^n)}{1-r} = \frac{120000(1-1.05^{11})}{1-1.05}$	M1: Correct sum formula with $n = 10, 11$ or 12	
(c)	$\frac{1-r}{1-r} = \frac{1-1.05}{1-1.05}$	A1: Correct numerical expression with $n = 11$	M1 A1
	1704814	Cao (Allow 1704814.00)	A1
			(3
			[9]
	Listing o	or trial/improvement in (b)	
	$U_{10} = 186\ 159.39,$	$U_{11} = 195\ 467.36, U_{12} = 205\ 240.72$	
		1 th or 12 th terms correctly using a common ratio of 1.05 e terms need not be listed)	M1
		gression correctly to reach a term > 200 000 eaches 195 467.36 – Hence the next year)	M1
		wrt 195 500 and a "12 th " term of awrt 205 200	A1
	Uses their numbe	r of terms to identify a calendar year	M1
		2024	A1
	If you are not sure how to awa	ard the marks please consult your Team Leader	(5

Question Number	Sc	heme	Marks	
4.				
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1	
	$3x - 10 = \alpha \Longrightarrow x = \frac{\alpha + 10}{3}$	Uses their α to find x. Allow $x = \frac{\alpha \pm 10}{3}$ not $\frac{\alpha}{3} \pm 10$	M1	
	Note: If $x = \frac{\alpha \pm 10}{3}$ is not clearly applied from applied to their second or third angle.			
	x = 41.2	Awrt	A1	
	$(3x-10=)360-\alpha$ (246.4)	$360 - \alpha$ (can be implied by 246.4)	M1	
	<i>x</i> = 85.5	Awrt	A1	
	$(3x-10=)360+\alpha$ (=473.57)	$360 + \alpha$ (Can be implied by 473.57)	M1	
	<i>x</i> = 161.2	Awrt	A1	
	 Note 1: Do not penalise incorrect accuracy more than once and penalise it the first time it occurs. E.g if answers are only given to the nearest integer (41, 85, 161) only the first A mark that would otherwise be scored is lost. Note 2: Ignore any answers outside the range. For extra answers in range in an otherwise 			
	fully correct solution lose final A1			
	Note 3: Lack of working means that it is sometimes not clear where their intermediate angles are coming from. In these cases, if the final answers are incorrect score M0.			
	and the method marks are available. If you su correctly then please use the review mechanis	n such cases the main scheme should be applied spect that the candidate is working in radians		
Way 2	$\cos^{-1}(0.4) = 66.42 \ (\alpha)$			
	180 - 66.42 = 113.58	Awrt 114	B1	
	$3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$	Uses their 113.58 to find x	M1	
	<i>x</i> = 41.2	Awrt	A1	
	$3x - 10 = 180 + \alpha$ (246.4)	$180 + \alpha$	M1	
	to give $x = 85.5$		A1	
	$3x - 10 = 540 - \alpha$ (473.57)	540 - α	M1	
	to give $x = 161.2$		A1	
	Special case -	takes 0.4 as -0.4		
	$\cos^{-1}(0.4) = 66.42 \ (\alpha)$		B0	
	$3x - 10 = 66.4 \Longrightarrow x = \frac{66.4 \pm 10}{3}$		M1	
	<i>x</i> = 41.2		A0	
	$3x - 10 = 360 - \alpha$ (293.6)		M1	
	<i>x</i> = 101.2		A0	
	$3x - 10 = 360 + \alpha$ (426.4)		M1	
	<i>x</i> = 145.5		A0	
			(3/7	

Question Number	Sche	eme	Marks		
5.					
(a)	Parts (i) and (ii) are likely to be sol	ved together so mark as one part			
(i)	The centre is at (10, 12)	B1: x = 10 B1: y = 12	B1 B1		
(ii)	Uses $(x-10)^2 + (y-12)^2 =$	$-195 + 100 + 144 \Longrightarrow r = \dots$	M1		
	Completes the square for both :	x and y in an attempt to find r .			
	$(x \pm "10")^2 \pm a$ and $(y \pm "12")^2$	$^{2} \pm b$ and $+195 = 0, (a, b \neq 0)$			
	Allow slips in obtaining their	r^2 but must find square root			
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r including the square root and can implied by a correct value for r	A1		
	<i>r</i> = 7	Not $r = \pm 7$ unless – 7 is rejected	A1		
			(5		
	Compares the given equation with	B1: $x = 10$			
(a)	$x^{2} + y^{2} + 2gx + 2fy + c = 0$ to write	D1 10	B1B1		
Way 2	down centre $(-g, -f)$ i.e. (10, 12)	B1: <i>y</i> = 12			
U	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1		
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r	A1		
	r = 7		A1		
			(5		
	Note that although the marks for the				
	come from correct work. E.g. $(x+10)$	y^2 , $(y+12)^2$ giving a centre of			
	(10, 12) scores B0 B0 but could score the M1A1ftA1ft for the radius as a				
	special case. Similarly $(x+10)^2$, $(y-12)^2$ giving a centre of (-10, 12)				
	scores B0 B1, $(x-10)^2$, $(y+12)^2$ giving a centre of (10, -12) scores B1 B0				
	but both could score M1A1ftA1ft for				
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1		
	$MN\left(=\sqrt{625}\right)=25$		A1		
	\ / 		(2		
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1		
	$NP = \sqrt{(25^2 + 7^2)}$ is M0 (Quite common)				
	$NP(=\sqrt{576}) = 24$		A1		
			(2		
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25"\sin(N)$	(MP) Correct strategy for finding NP	M1		
y —	NP = 24		A1		
			(2		
			[9		

Question Number	Sch	eme	Marks	S
6.		1		
(a)	$2\log(x+15) = \log(x+15)^2$		B1	
	$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$	Correct use of $\log a - \log b = \log \frac{a}{b}$	M1	
	$2\log(x+15) - \log x = 6$	$\Rightarrow \log\left(\frac{\left(x+15\right)^2}{x}\right) = 6$		
	with no incorrect work so	cores B1M1 together		
	$2\log_2(x+15) - \log_2 x$	$= 2\log_2\frac{(x+15)}{x}$ is M0		
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1	
	$\log_2 \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$	Removes logs correctly	M1	
	$2\log(x+15) - \log x = 6 \Longrightarrow \log(x + 15)$	$(-15)^2 - \log x = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$		
		the first 4 marks		
	This method mark should only be awarded way. Some examples are below,			
	$\frac{\log(x+15)^2}{\log x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 6 \mathbf{M0}$	$\log \frac{(x+15)^2}{x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 6$ M0		
	$\log \frac{(x+15)^2}{x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = \log_2 6\mathbf{M}$			
	$\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6^2 \operatorname{MO} 10$	$\log\left(\frac{(x+15)}{x}\right)^2 = 6 \Rightarrow \left(\frac{(x+15)}{x}\right)^2 = 64 \mathrm{M1}$		
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to		
	$or x + 30 + 225 x^{-1} = 64$	score the final mark.		
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer with no errors but allow recovery from 'invisible' brackets e.g.	A1	
		$x + 15^2 \rightarrow x^2 + 30x + 225$		(
(b)	$(x-25)(x-9) = 0 \Longrightarrow x = 25 \text{ or } x = 9$	M1: Correct attempt to solve the given quadratic as far as $x =$ It must be an attempt at solving the given quadratic but allow mis-copy e.g. 255 for 225	M1 A1	
		A1: Both 25 and 9		1
				<u>()</u> ']
				<u> </u>
	See appendix for some alternative c	orrect and incorrect methods for (a)		

Question Number	Scher	me		Marks	
7.					
(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Longrightarrow \cos \alpha = .$	••••	Correct use of cosine rule leading to a value for $\cos \alpha$	M1	
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604.\right)$.)			
	$\alpha = 2.22 *$	/	Cso (2.22 must be seen here)	A1	
	$\alpha = 2.22$ (NB $\alpha = 2.219516005$)		Cso (2.22 must be seen here)		(2)
(a) Way 2	$XY^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6\cos 2.22 \Longrightarrow XY$	$r^2 =$	Correct use of cosine rule leading to a value for XY^2	M1	<u>(</u>
	$XY^2 = 81.01$				
	<i>XY</i> = 9.00			A1	
					(2
(b)	$2\pi - 2.22(= 4.06366)$		$2\pi - 2.22$ or awrt 4.06 or $2\pi - 2.2$ or awrt 4.08 (May be implied)	B1	<u> </u>
	$\frac{1}{2} \times 4^2 \times "4.06"$		Correct method for major sector area. Allow $\pi - 2.22$ for the major sector angle.	M1	
	32.5		Awrt 32.5	A1	
	Finding the minor sector			((3
(b) Way2	Circle – Minor sector				
	$\pi \times 4^2$	Co	orrect expression for circle area	B1	
	$\frac{\pi \times 4^2}{\pi \times 4^2 - \frac{1}{2} \times 4^2 \times 2.22 = 32.5}$	orrect method for ircle - minor sector area	M1		
	= 32.5	A	wrt 32.5	A1	
					(3
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	orrect expression for the area of angle XYZ (allow 2.2 or awrt 2.22)	B1	<u> </u>	
	So area required = " 9.56" + "32.5"	Z	heir Triangle XYZ (Not triangle XW) + (part (b) answer or correct tempt at major sector)	M1	
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$		wrt 42.1 or 42.0 (Or just 42)	A1	
			· • •		(3
	Note: The minor sector area (17.76) + the triang answer to (d) – beware!	le (9.56)	= 27.32 which looks like the		
(d)	Arc length = $4 \times 4.06 (= 16.24)$		11: $4 \times their(2\pi - 2.22)$ r circumference – minor arc	M1A1ft	
(•••)	Or $8\pi - 4 \times 2.22$		1: Correct ft expression		
	Perimeter = $ZY + WY + Arc Length$		+ 2 + Any Arc	M1	
	Perimeter = 27.2 or 27.3		wrt 27.2 or awrt 27.3	A1	
	Note the order of marks on Epen is M correspond so that the second mark on I	[1M1A]	1A1 – the M's and A's must		
	correspond so that the second mark off		the second wit on the schelle		(4)
	(Generally do not apply isw in this question and man subsequently round				<u>(</u>
	In this question we will need to be careful with labe be marked as labelled by the candidate.	elling as	each part has clear demands and must		

Question Number	Scheme		
8.	<i>y</i> = 6	$-3x - \frac{4}{x^3}$ M1: $x^n \to x^{n-1}$	
(a)	$\frac{dy}{dx} = -3 + \frac{12}{x^4}or - 3 + 12x^{-4}$	M1: $x^n \to x^{n-1}$ $(x \to x^0 \text{ or } x^{-3} \to x^{-4} \text{ or } 6 \to 0)$ A1: Correct derivative	M1 A1
	$\frac{dy}{dx} = 0 \Rightarrow -3 + \frac{12}{x^4} = 0 \Rightarrow x = \dots \text{ or}$ $\frac{dy}{dx} = -3 + \frac{12}{\sqrt{2}^4}$	y' = 0 and attempt to solve for x May be implied by $\frac{dy}{dx} = -3 + \frac{12}{x^4} = 0 \Rightarrow \frac{12}{x^4} = 3 \Rightarrow x =$ or Substitutes $x = \sqrt{2}$ into their y'	M1
	So $x^4 = 4$ and $x = \sqrt{2}$ or $\frac{dy}{dx} = -3 + \frac{12}{(\sqrt{2})^4}$ or $-3 + 12(\sqrt{2})^{-4} = 0$	Correct completion to printed answer with no errors by solving their $y' = 0$ or substituting $x = \sqrt{2}$ into their y'	A1
	For solving, allow e.g.	$x^{-4} = \frac{1}{4} \Longrightarrow x = \left(\frac{1}{4}\right)^{-\frac{1}{4}} = \sqrt{2}$ here which could be implied by -3 + 3 = 0	
		$=1.41=\sqrt{2}$ for the final A1	(4
(b)	$x = -\sqrt{2}$	Awrt -1.41	B1
			(1
(c)	$\frac{d^2 y}{dx^2} = \frac{-48}{x^5}$ or $-48x^{-5}$	Follow through their first derivative from part (a)	B1ft
(d)	An appreciation that either $y'' > 0 \Rightarrow a$ minimum or $y'' < 0 \Rightarrow a$ maximum	A generous mark that is independent of any previous work	B1 (1
	Maximum at P as $y'' < 0$	Cso	B1
	correct and there must be reference to P	rk. y'' need not be evaluated but must be or to $\sqrt{2}$ and negative or < 0 and maximum. ory statements (NB allow y'' = awrt-8 or -9)	
	Minimum at Q as $y'' > 0$	Cso	B1
	correct and part (b) must be correct an	There must be no incorrect or contradictory y'' need not be evaluated but must be ad there must be reference to P or to There must be no incorrect or contradictory	
			(.
			[
		he turning points are acceptable. The first B1 is $\sqrt{2}$ or their <i>x</i> at Q and the second and third e maximum/minimum.	

Question Number	Scheme			Marks
9.	y = 27 - 2x			
(a)	6.272 , 3.634		Awrt in each case	B1, B1
	Special case 6.27 <u>an</u>	<u>d</u> 3.63 scores B1B0		
				(2)
(b)	$\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$			B1
	$\dots \{(0+0) + 2(5.866 + "6.272" + 5.210)\}$	+"3.634"+1.856)}	Need {} or implied later for A1ft	M1A1ft
	(0+0) may be implied if omitted and	follow through their		
	otherwise correct expression and allow	one missing or mis-	-copied term in the	
	2() bracket for	the method mark		
	$\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6.5)$	272"+ 5.210 + "3.634	4"+1.856)	
	Unless followed by an answer that imp B1M1A0A0 (Usually impli			
	$\frac{1}{2} \times 0.5 \{ (0+0) + 2 (5.866 + "6.$	272"+ 5.210 + "3.634	4"+1.856)}	
	$=\frac{1}{4}\times 4$	45.676		
	= 11.42	cao		A1
	Separate trapezia may be used : B1 for times (and A1ft all correct)	0.25, M1 for $\frac{1}{2}h(a + b)$	b) used 5 or 6	
	NB $\frac{1}{2} \times 0.5 \{(0+0) + 2(0+5.866 + "6.5)\}$	272"+ 5.210 + "3.634 res B1M0A0A0	4"+1.856+0)}	
	Correct answer	with no working sco	ores 0/4	
				(4)
		M1: $x^n \rightarrow x^{n+1}$ on	any term	
		A1: $27x - x^2$		
	$\int y \mathrm{d}x = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} \left(+c \right)$	A1: $-6x^{\frac{3}{2}}$		M1A1A1A1
		A1: $+16x^{-1}$		
(c)	Accept any correct and possibly unsimplified versions for the terms and mark			
	in this order on Epen $(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})$	Attempt to subtraction round using the line	-	
	$ \begin{pmatrix} 27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1} \\ - (27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1} \end{pmatrix} $	Dependent on the be implied by 48 – need to check both integration has err	previous M1. May 36 but you may 1 their values if the	dM1
	= (48			
	12	Cao (Penalise -12	2)	A1
				(6)
				[12]

<u>Appendix</u>

3(b) Way 2	$120000 \times (1.05)^{n-1} > 200000$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1
	$\log_{1.05} 1.05^{n-1} > \log_{1.05} \left(\frac{5}{3}\right)$	Takes logs correctly Allow <i>n</i> or <i>n</i> – 1 and ">", "<", or "=" etc. This may be implied by $n-1 > \log_{1.05}\left(\frac{5}{3}\right)$ and effectively gets the next A1	M1
	e.g. $\log_{1.05} (120000 \times (1.05)^{n-1}) = (n$	$(-1)\log_{1.05}(120000 \times (1.05))$ would be M0	
	$(n-1>)\log_{1.05}, \frac{5}{3}$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	A1
	2024	M1: Identifies a calendar year using their value of n or $n - 1$ A1: 2024 only cso	M1A1
		· · · · · · · · · · · · · · · · · · ·	(5)

3(b) MR?	$\frac{120000 \times (1 - 1.05^n)}{1 - 1.05} > 200000$		M0
	$1.05^n > \frac{13}{12}$		
	$\log 1.05^n > \log\left(\frac{13}{12}\right)$	Takes logs correctly	M1
	$n > \frac{\log\left(\frac{13}{12}\right)}{\log 1.05}$		A0
	2014	M1: Identifies a calendar year using their value of <i>n</i> or <i>n</i> - 1A1: 2024 only	M1A0
	Trial & Imp	rovement for this MR is 0/5	
			(2/5)

4. Way 3	General Solution		
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	3x - 10 = 360n + 113.58	$360n + \alpha$	M1
	3x - 10 = 360n - 113.58	$360n-\alpha$	M1
	$3x - 10 = \alpha \Rightarrow 3x = \alpha + 10$		
	$x = \frac{360n + 123.58}{3} \text{ or } \frac{360n - 103.58}{3}$	$x = \frac{360n \pm 113.58 \pm 10}{3}$	M1
	<i>x</i> = 41.2	Awrt	A1
	<i>x</i> = 85.5	Awrt	A1
	<i>x</i> = 161.2	Awrt	A1
			(7)

4.	Spe	ecial Case 1	
	$\cos(3x-10) = \cos(3x) - \cos(10)$		
	$\cos(3x) = -0.4 + \cos(10)$		
	$\cos(3x) = 0.5848$		
	$3x = 54.2 = \alpha$		
	x = 18.1		
	B01	MOA0 so far	
	$3x = 360 - \alpha$	$360-\alpha$	M1
	x = 101.9	Awrt	A0
	$3x = 360 + \alpha$	$360 + \alpha$	M1
	x = 138.1	Awrt	A0
			(2/7)

4.	Special C	Case 2 – Quite common	
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	$3x - 10 = \alpha \Longrightarrow x = \frac{\alpha + 10}{3}$	Uses their α to find x. Allow $x = \frac{\alpha \pm 10}{3}$ not $\frac{\alpha}{3} \pm 10$	M1
	x = 41.2	Awrt	A1
	$3x - 10 = \alpha \Longrightarrow 3x = \alpha + 10$		
	$3x = 360 - (\alpha + 10)$		M 0
	<i>x</i> = 78.8		A0
	$3x = 360 + (\alpha + 10)$		M1
	x = 161.2	Awrt	A1
			(5/7)

4.	Possible scenarios		
	Answers	Marks	
	41.2, 97.9	B1M1A1M0A0M0A0	
	41.2, 97.9, 142.7	B1M1A1M0A0M0A0	
	41.2, 85.5, 97.9	B1M1A1M1A1M0A0	
	41.2, 97.9, 161.2	B1M1A1M0A0M1A1	
	41.2, 85.5, 97.9, 142.7	B1M1A1M1A1M0A0	
	41.2, 85.5, 97.9, 161.2	B1M1A1M1A1M1A0	
	41.2, 85.5, 97.9, 142.7, 161.2	B1M1A1M1A1M1A0	

6 Way 2	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^2 = 6 + \log x$		
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 64 + \log_2 x = \log_2 \left(64x \right)$	Correct use of $\log a + \log b = \log ab$	M1
	$\left(x+15\right)^2 = 64x$	Removes logs correctly	M1
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer	A1
			(5)

6 Way 3	$2\log(x+15) = \log(x+15)^2$		B1
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 (x+15)^2 - \log_2 x = \log_2 64$		
	$\left(x+15\right)^2 = 64x$	Correct use of $\log a + \log b = \log ab$ (implied) and removes logs correctly.	M1, M1
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer	A1
			(5)

6 Way 4	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^{2} - \log x = \frac{\log(x+15)^{2}}{\log x}$		MO
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\frac{\log_2(x+15)^2}{\log x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 64$		MO
	$\Rightarrow x^2 + 30x + 225 = 64x$		
	$\therefore x^2 - 34x + 225 = 0 *$		A0
			(2/5)

6 Way 5			
	$2\log(x+15) - \log x = 2\log\left(\frac{x+15}{x}\right)$		M0
	$\log_2 \frac{\left(x+15\right)^2}{x} = 6$		B0 (first)
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\frac{\left(x+15\right)^2}{x} = 64$		M1
	$\Rightarrow x^2 + 30x + 225 = 64x$		
	$\therefore x^2 - 34x + 225 = 0 *$	Incorrect solution	A0
			(2/5)