Paper Reference(s)

6664/01 **Edexcel GCE**

Core Mathematics C2

Advanced Subsidiary

Thursday 26 May 2011 – Morning

Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Pink)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them..

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. There are 9 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

1.	$f(x) = 2x^3 - 7x^2 - 5x + 4$	
	(a) Find the remainder when $f(x)$ is divided by $(x - 1)$.	(2)
	(b) Use the factor theorem to show that $(x + 1)$ is a factor of $f(x)$.	(2)
	(c) Factorise f(x) completely.	(4)
2.	(a) Find the first 3 terms, in ascending powers of x , of the binomial expansion of	
	$(3+bx)^5$	
	where b is a non-zero constant. Give each term in its simplest form.	(4)
	Given that, in this expansion, the coefficient of x^2 is twice the coefficient of x ,	
	(b) find the value of b .	(2)
3.	Find, giving your answer to 3 significant figures where appropriate, the value of x for which (a) $5^x = 10$,	ı
	(b) $\log_3(x-2) = -1$.	(2) (2)
4.	The circle <i>C</i> has equation $x^2 + y^2 + 4x - 2y - 11 = 0.$	
	Find	
	(a) the coordinates of the centre of C ,	(2)
	(b) the radius of C ,	
	(c) the coordinates of the points where C crosses the y-axis, giving your answers as simple C	(2) olified
	surds.	(4)

P38158A 2

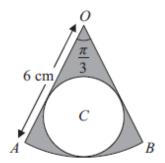


Figure 1

The shape shown in Figure 1 is a pattern for a pendant. It consists of a sector OAB of a circle centre O, of radius 6 cm, and angle $AOB = \frac{\pi}{3}$. The circle C, inside the sector, touches the two straight edges, OA and OB, and the arc AB as shown.

Find

(a) the area of the sector OAB, (2)

(b) the radius of the circle C. (3)

The region outside the circle C and inside the sector OAB is shown shaded in Figure 1.

(c) Find the area of the shaded region. (2)

6. The second and third terms of a geometric series are 192 and 144 respectively.

For this series, find

(a) the common ratio, (2)

(b) the first term, (2)

(c) the sum to infinity, (2)

(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. (4)

P38158A 3

7. (a) Solve for $0 \le x < 360^{\circ}$, giving your answers in degrees to 1 decimal place,

$$3 \sin (x + 45^\circ) = 2. \tag{4}$$

(b) Find, for $0 \le x < 2\pi$, all the solutions of

$$2 \sin^2 x + 2 = 7\cos x$$

giving your answers in radians.

You must show clearly how you obtained your answers.

(6)

8.

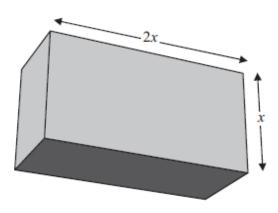


Figure 2

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.

(a) Show that the total length, L cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2}.$$
 (3)

(b) Use calculus to find the minimum value of L.

(6)

(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

4

(2)

9.

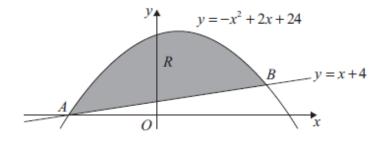


Figure 3

The straight line with equation y = x + 4 cuts the curve with equation $y = -x^2 + 2x + 24$ at the points A and B, as shown in Figure 3.

(a) Use algebra to find the coordinates of the points A and B. (4)

The finite region *R* is bounded by the straight line and the curve and is shown shaded in Figure 3.

(b) Use calculus to find the exact area of R.

(7)

TOTAL FOR PAPER: 75 MARKS

END

5

June 2011 Core Mathematics C2 6664 Mark Scheme

O	Wark Sci	101110		
Question Number	Schem	ne	Mar	ks
1.	$f(x) = 2x^3 - 7x^2 - 5x + 4$			
(a)	Remainder = $f(1) = 2 - 7 - 5 + 4 = -6$	Attempts $f(1)$ or $f(-1)$.	M1	
(a)	= -6	- 6		[2]
		Attempts $f(-1)$.	M1	[4]
(b)	$f(-1) = 2(-1)^3 - 7(-1)^2 - 5(-1) + 4$	f(-1) = 0 with no sign or substitution	IVII	
	and so $(x + 1)$ is a factor.	(-1) = 0 with no sign of substitution errors and for conclusion.	A1	[2]
(c)	$f(x) = \{(x+1)\}(2x^2 - 9x + 4)$	errors and for conclusion.	M1 A	
	= (x+1)(2x-1)(x-4)			
		(a)) for the final three marks in this mant	dM1	
	(Note : Ignore the ePEN notation of (b) (should be	(c)) for the final three marks in this part).		[4] 8
(a)	M1 for <i>attempting</i> either $f(1)$ or $f(-1)$. Can be in	nplied. Only one slip permitted.	ı	
	M1 can also be given for an attempt (at least two "s			
	remainder which is independent of x . A1 can be gi	_	ision	
	working. Award A0 for a candidate who finds -6	but then states that the remainder is 6.		
	Award M1A1 for -6 without any working.			
(b)	M1: attempting only $f(-1)$. A1: must correctly s	show $f(-1) = 0$ and give a conclusion <i>in part</i>	(b) onl	ly.
	Note : Stating "hence factor" or "it is a factor" or a	-		
	Note also that a conclusion can be implied from a property of the conclusion of th	·	"	
	Note: Long division scores no marks in part (b)			
(c)	1 st M1: Attempts long division or other method, to			
	Working need not be seen as this could be done "by	y inspection." $(2x^2 \pm ax \pm b)$ must be seen <i>in</i> .	part (c)
	only. Award 1 st M0 if the quadratic factor is clearly	y found from dividing $f(x)$ by $(x-1)$. Eg. So	me	
	candidates use their $(2x^2 - 5x - 10)$ in part (c) foun	d from applying a long division method in part	(a).	
	1 st A1: For seeing $(2x^2 - 9x + 4)$.			
	2 nd dM1: Factorises a 3 term quadratic. (see rule f previous method mark being awarded. This mark quadratic formula correctly.			
	2^{nd} A1: is cao and needs all three factors on one lin	ne. Ignore following work (such as a solution t	o a	
	quadratic equation.)			
	Note: Some candidates will go from $\{(x+1)\}(2x^2)$	$-9x + 4$) to $\{x = -1\}$, $x = \frac{1}{2}$, 4, and not list a	all three	e
	factors. Award these responses M1A1M1A0.			
	<u>Alternative:</u> 1^{st} M1: For finding either $f(4) = 0$	or $f\left(\frac{1}{2}\right) = 0$.		
	1 st A1: A second correct factor of usually $(x - 4)$ of	or $(2x - 1)$ found. Note that any one of the oth	ner corr	rect
	factors found would imply the 1 st M1 mark.			
	2 nd dM1: For using two known factors to find the t			
	2^{nd} A1 for correct answer of $(x+1)(2x-1)(x-4)$.			
	Alternative: (for the first two marks)			
	1st M1: Expands $(x+1)(2x^2+ax+b)$ {giving $2x^3+(a+2)x^2+(b+a)x+b$ } then compare			
	coefficients to find <u>values</u> for a and b . 1^{st} A1:	a = -9, b = 4		
	Not dealing with a factor of 2: $(x+1)(x-\frac{1}{2})(x-4)$ or $(x+1)(x-\frac{1}{2})(2x-8)$ scores M1A1M1A0.			
	Answer only, with one sign error: eg. $(x+1)(2x+1)(x-4)$ or $(x+1)(2x-1)(x+4)$ scores			
	M1A1M1A0. (c) Award M1A1M1A1 for Listi	ng all three correct factors with no working		

Question Number	Scheme		Mark	S
2. (a)	$\left\{ (3+bx)^5 \right\} = (3)^5 + \frac{{}^5C_1(3)^4(b\underline{x}) + \frac{{}^5C_2(3)^3(b\underline{x})^2}{2} + \dots}{= 243 + 405bx + 270b^2x^2 + \dots}$	243 as a constant term seen. 405bx (${}^{5}C_{1} \times \times x$) or (${}^{5}C_{2} \times \times x^{2}$) $270b^{2}x^{2}$ or $270(bx)^{2}$	B1 B1 <u>M1</u> A1 [[4]
(b)	${2(\text{coeff } x) = \text{coeff } x^2} \Rightarrow 2(405b) = 270b^2$	Establishes an equation from their coefficients. Condone 2 on the wrong side of the equation.	M1	
	So, $\left\{b = \frac{810}{270} \Rightarrow\right\} b = 3$	b = 3 (Ignore $b = 0$, if seen.)	A1	[2]
(a) (b)	The terms can be "listed" rather than added. Ignore any e 1^{st} B1: A constant term of 243 seen. Just writing (3) ⁵ is B2 2^{nd} B1: Term must be simplified to $405bx$ for B1. The x $405 + bx$ is B0. M1: For either the x term or the x^2 term. Requires correct power of x , but the other part of the coefficient (per wrong or missing). Allow binomial coefficients such as $\binom{5}{2}$, $\binom{5}{2}$, $\binom{5}{1}$, $\binom{5}{1}$. A1: For either $270b^2x^2$ or $270(bx)^2$. (If $270bx^2$ follow Alternative: Note that a factor of 3^5 can be taken out first: $3^5 \left(1 + \frac{bx}{3}\right)$. Ignore subsequent working (isw): Isw if necessary after e.g. $243 + 405bx + 270b^2x^2 + \dots$ leading to $9 + 15bx + 15$	is required for this mark. Note is $\frac{1}{2}$ binomial coefficient in any form $\frac{1}{2}$ branch is $\frac{1}{2}$ correct working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}$	with the b) may b	6
	Note: The mistake $k \left(1 + \frac{bx}{3}\right)^5$, $k \ne 243$ would give a m Note: For $270bx^2$ in part (a), followed by $2(405b) = 270$			\1 .

		1
Question Number	Scheme	Marks
3.	(a) $5^x = 10$ and (b) $\log_3(x - 2) = -1$	
(a)	$x = \frac{\log 10}{\log 5} \text{or} x = \log_5 10$	M1
	x = 1.430676558 = 1.43 (3 sf)	A1 cao [2]
(b)	$(x-2) = 3^{-1}$ $(x-2) = 3^{-1}$ or $\frac{1}{3}$	M1 oe
	$x \left\{ = \frac{1}{3} + 2 \right\} = 2\frac{1}{3}$ $2\frac{1}{3}$ or 2.3 or awrt 2.33	A1
		[2] 4
(a)	M1: for $x = \frac{\log 10}{\log 5}$ or $x = \log_5 10$. Also allow M1 for $x = \frac{1}{\log 5}$	
(b)	1.43 with no working (or any working) scores M1A1 (even if left as $5^{1.43}$). Other answers which round to 1.4 with no working score M1A0. Trial & Improvement Method: M1: For a method of trial and improvement by trialing f (value between 1.4 and 1.43) = Value below 10 and f (value between 1.431 and 1.5) = Value over 10. A1 for 1.43 cao. Note: $x = \log_{10} 5$ by itself is M0; but $x = \log_{10} 5$ followed by $x = 1.430676558$ is M1. M1: Is for correctly eliminating log out of the equation. Eg 1: $\log_3(x-2) = \log_3(\frac{1}{3}) \Rightarrow x-2=\frac{1}{3}$ only gets M1 when the logs are correctly remove Eg 2: $\log_3(x-2) = -\log_3(3) \Rightarrow \log_3(x-2) + \log_3(3) = 0 \Rightarrow \log_3(3(x-2)) = 0 \Rightarrow 3(x-2) = 3^0$ only gets M1 when the logs are correctly removed, but $3(x-2) = 0$ would score M0. Note: $\log_3(x-2) = -1 \Rightarrow \log_3\left(\frac{x}{2}\right) = -1 \Rightarrow \frac{x}{2} = 3^{-1}$ would score M0 for incorrect use $\frac{1}{\log_{10}(x-2)} = 1 \Rightarrow \log_{10}(x-2) = -\log_{10} 3 \Rightarrow \log_{10}(x-2) + \log_{10} 3 = 0 \Rightarrow \log_{10} 3(x-2) = 0 \Rightarrow 3(x-2) = 10^0$. At this point M1 is scored. A correct answer in (b) without any working scores M1A1.	

Question	Scheme	Mar	kc	
Number		IVIAI	K2	
4.	$\begin{cases} x^2 + y^2 + 4x - 2y - 11 = 0 \\ (x - 2)^2 + 4x - 2y - 11 = 0 \end{cases}$			
(a)	$\left\{ (\underline{x+2})^2 - 4 + \underline{(y-1)^2 - 1} - 11 = 0 \right\} $ (±2, ±1), see notes.	M1		
(1-)	Centre is $(-2, 1)$. $(-2, 1)$. $(-2, 1)$. $r = \sqrt{11 \pm "1" \pm "4"}$	A1 cao	[2]	
(b)		M1		
	So $r = \sqrt{11 + 1 + 4} \implies r = 4$ 4 or $\sqrt{16}$ (Award A0 for ± 4).	A1 [2]		
(c)	When $x = 0$, $y^2 - 2y - 11 = 0$ Putting $x = 0$ in C or their C .	M1		
	$y^2 - 2y - 11 = 0$ or $(y - 1)^2 = 12$, etc	A1 aef		
	$y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ Attempt to use formula or a method of completing the square in order to find $y = \dots$	M1		
		A1 cao	cso	
	So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$	[4]		
			8	
	Note: Please mark parts (a) and (b) together. Answers only in (a) and/or (b) get full mark Note in part (a) the marks are now M1A1 and not B1B1 as on ePEN.	ks.		
(a)	M1: for $(\pm 2, \pm 1)$. Otherwise, M1 for an attempt to complete the square eg. $(x \pm 2)^2 \pm \alpha$, α	≠ 0 or		
	$(\underline{y \pm 1})^2 \pm \beta$, $\beta \neq 0$. M1A1: Correct answer of $(-2, 1)$ stated from any working gets M1A1			
(b)	M1: to find the radius using 11, "1" and "4", ie. $r = \sqrt{11 \pm "1" \pm "4"}$. By applying this meth		lates	
	will usually achieve $\sqrt{16}$, $\sqrt{6}$, $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14.			
	Note: $(x+2)^2 + (y-1)^2 = -11 - 5 = -16 \Rightarrow r = \sqrt{16} = 4$ should be awarded M0A0.			
	Alternative: M1 in part (a): For comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down	centre		
	$(-g, -f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r = \sqrt{g^2}$	$\frac{1}{+f^2-c}$		
	Condone sign errors for this method mark.			
	$(x+2)^2 + (y-1)^2 = 16 \implies r = 8 \text{ scores M0A0, but } r = \sqrt{16} = 8 \text{ scores M1A1 isw.}$			
(c)	1st M1: Putting $x = 0$ in either $x^2 + y^2 + 4x - 2y - 11 = 0$ or their circle equation usually give		(a) or	
	part (b). 1^{st} A1 for a correct equation in y in any form which can be implied by later workin 2^{nd} M1: See rules for using the formula. Or completing the square on a 3TQ to give $y = a \pm \sqrt{\frac{1}{2}}$.	
	\sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$. This mark should not be given for an attempt to factorise			
	2^{nd} A1: Need exact pair in simplified surd form of $\{y = \}$ $1 \pm 2\sqrt{3}$. This mark is also cso.			
	Do not need to see $(0, 1 + 2\sqrt{3})$ and $(0, 1 - 2\sqrt{3})$. Allow 2^{nd} A1 for bod $(1 + 2\sqrt{3}, 0)$ and $(1 - 2\sqrt{3})$.	$-2\sqrt{3}$, 0)		
	Any incorrect working in (c) gets penalised the final accuracy mark. So, beware: incorrect			
	$(x-2)^2 + (y-1)^2 = 16$ leading to $y^2 - 2y - 11 = 0$ and then $y = 1 \pm 2\sqrt{3}$ scores M1A1M1A0.			
	Special Case for setting $y = 0$: Award SC: M0A0M1A0 for an attempt at applying the formula Award SC: M0A0M1A0 for completing the			
	$\left x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \right = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \left \begin{array}{c} \text{square to their equation in } x \text{ which } w \\ \text{be } x^2 + 4x - 11 = 0 \text{ to give } a + \sqrt{b} \end{array} \right $			
	$x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \right\} $ square to their equation in x which will usu be $x^2 + 4x - 11 = 0$ to give $a \pm \sqrt{b}$, when \sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$.			
	Special Case: For a candidate not using \pm but achieving one of the correct answers then awar	:d		
	SC: M1A1 M1A0 for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{3}$			

Question		
Number	Scheme	Marks
5.	$\frac{1}{2}r^2\theta = \frac{1}{2}(6)^2 \left(\frac{\pi}{3}\right) = 6\pi \text{ or } 18.85 \text{ or awrt } 18.8 \text{ (cm)}^2$ Using $\frac{1}{2}r^2\theta$ (See notes)	M1
(a)	2^{7} $2^{(6)}$ (3) 6 π or 18.85 or awrt 18.8	A1
		[2]
(b)	$\sin\left(\frac{\pi}{6}\right) = \frac{r}{6-r}$ $\sin\left(\frac{\pi}{6}\right) \text{ or } \sin 30^\circ = \frac{r}{6-r}$	
	$\frac{1}{2} = \frac{r}{6 - r}$ Replaces sin by numeric value $6 - r = 2r \Rightarrow r = 2$ $r = 2$	dM1
	$6 - r = 2r \Rightarrow r = 2$ $r = 2$	A1 cso [3]
(c)	Area = $6\pi - \pi(2)^2 = 2\pi$ or awrt 6.3 (cm) ² their area of sector – πr^2 2π or awrt 6.3	M1 A1 cao [2]
(a)	M1: Needs θ in radians for this formula. Candidate could convert to degrees and use the degrees formula. A1: Does not need units. Answer should be either 6π or 18.85 or awrt 18.8 Correct answer with no working is M1A1. This M1A1 can only be awarded in part (a).	
(b)	M1: Also allow $\cos\left(\frac{\pi}{3}\right)$ or $\cos 60^{\circ} = \frac{r}{6-r}$. 1st M1: Needs correct trigonometry method. Candidates could state $\sin\left(\frac{\pi}{6}\right) = \frac{r}{x}$ and $x + r = \frac{r}{3}$.	= 6 or
(c)	equivalent in their working to gain this method mark. dM1: Replaces sin by numerical value. $0.009 = \frac{r}{6-r}$ from working "incorrectly" in degree here for dM1. A1: For $r = 2$ from correct solution only. Alternative: 1^{st} M1 for $\frac{r}{oc} = \sin 30$ or $\frac{r}{oc} = \cos 60$. 2^{nd} M1 for $OC = 2r$ and then A1 for $r = \frac{\text{Note}}{\text{Note}}$ seeing $OC = 2r$ is M1M1. Special Case: If a candidate states an answer of $r = 2$ (must be in part (b)) as a guess or from incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A (c). M1: For "their area of sector – their area of circle", where $r > 0$ is ft from their answer to part Allow the method mark if "their area of sector" < "their area of circle". The candidate must somewhere in their working that they are subtracting the correct way round, even if their answer negative. Some candidates in part (c) will either use their value of r from part (b) or even introduce a varian part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these candidates. Candidates can get M1 by writing "their part (a) answer – πr^2 ", where the radius of the not substituted. A1: cao – accept exact answer or awrt 6.3 Correct answer only with no working in (c) gets M1A1 Beware: The answer in (c) is the same as the arc length of the pendant	= 2. A1 in part rt (b). how ver is tlue of r didates.

Question Number	Scheme	Marks
6. (a)	$\{ ar = 192 \text{ and } ar^2 = 144 \}$	
· · ·	$r = \frac{144}{192}$ Attempt to eliminate a. (See notes.)	M1
	$\begin{vmatrix} 192 \\ r = \frac{3}{4} \text{ or } 0.75 \end{vmatrix}$	A1
		[2]
(b)	a(0.75) = 192	M1
	$a\left\{ = \frac{192}{0.75} \right\} = 256$	A1 [2]
(c)	$S_{\infty} = \frac{256}{1 - 0.75}$ Applies $\frac{a}{1 - r}$ correctly using both their a and their $ r < 1$.	M1
	So, $\{S_{\infty} = \}$ 1024	A1 cao [2]
(d)	$256(1-(0.75)^n)$ Applies S _n with their a and r and "uses" 1000	
	$\frac{256(1-(0.75)^n)}{1-0.75} > 1000$ at any point in their working. (Allow with = or <).	M1
	$(0.75)^n < 1 - \frac{1000(0.25)}{256} $ $\left\{ = \frac{6}{256} \right\}$ Attempt to isolate $+(r)^n$ from S_n formula.	M1
	(Allow With = or >).	
	$n\log(0.75) < \log\left(\frac{6}{256}\right)$ Uses the power law of logarithms correctly. (Allow with = or >). (See notes.)	M1
	$n > \frac{\log(\frac{6}{256})}{\log(0.75)} = 13.0471042 \Rightarrow n = 14$ See notes and $n = 14$	A1 cso
		[4] 10
(a)	M1: for eliminating a by eg. $192r = 144$ or by either dividing $ar^2 = 144$ by $ar = 192$ or div	viding
	$ar = 192$ by $ar^2 = 144$, to achieve an equation in r or $\frac{1}{r}$ Note that $r^2 - r = \frac{144}{192}$ is M0.	
	Note also that any of $r = \frac{144}{192}$ or $r = \frac{192}{144} \left\{ = \frac{4}{3} \right\}$ or $\frac{1}{r} = \frac{192}{144}$ or $\frac{1}{r} = \frac{144}{192}$ are fine for the aw	ard of
	M1. Note: A candidate just writing $r = \frac{144}{192}$ with no reference to a can also get the method in	mark.
	Note : $ar^2 = 192$ and $ar^3 = 144$ leading to $r = \frac{3}{4}$ scores M1A1. This is because r is the rational between any two consecutive terms. These candidates, however, will usually be penalised in particular to the rational scores of the rational	
(b)	M1 for inserting their r into either of the correct equations of either $ar = 192$ or $ar{a} = \frac{192}{r}$ or	mi (0).
	$ar^2 = 144$ or $\{a = \}$ $\frac{144}{r^2}$. No slips allowed here for M1.	
	M1: can also be awarded for writing down $144 = a \left(\frac{192}{a}\right)^2$	
	A1 for $a = 256$ only. Note 256 from any working scores M1A1.	
	Note : Some candidates incorrectly confuse notation to give $r = \frac{4}{3}$ or 1.33 in part (a) (g M1A0). In part (b), they recover to write $a = 192 \times \frac{4}{3}$ for M1 and then 256 for A1.	getting

Question Number	Scheme	Marks	
(c)	M1: for applying $\frac{a}{1-r}$ correctly (no slips allowed!) using both their a and their r , where $ r < 1$.		
(d)	A1: for 1024, cao. In parts (a) or (b) or (c), the correct answer with no working scores full marks. 1^{st} M1: For applying S_n with their a and either "the letter r " or their r and "uses" 1000.		
	2^{nd} M1: For isolating $+(r)^n$ and not $(ar)^n$, (eg. $(192)^n$) as the subject of an equation or in	nequality.	
	$+(r)^n$ must be derived from the S_n formula.		
	3^{rd} M1: For applying the power law to $\lambda^k = \mu$ to give $k \log \lambda = \log \mu$ oe. where $\lambda, \mu > 1$	0.	
	or 3 rd M1: For solving $\lambda^k = \mu$ to give $k = \log_{\lambda} \mu$, where $\lambda, \mu > 0$.		
	A1: cso If a candidate uses inequalities, a fully correct method with inequalities is require So, an <u>incorrect</u> inequality statement at any stage in a candidate's working for this part lose mark.		
	Note: Some candidates do not realise that the direction of the inequality is reversed in the	final line	
	of their solution. Or A1: cso Note a candidate can achieve full marks here if they do not use inequalities.		
	So, if a candidate uses equations rather than inequalities in their working then they need to state in the		
	final line of their working that $n = 13.04$ (truncated) or $n = \text{awrt } 13.05 \Rightarrow n = 14$ for A1.		
	n = 14 from no working gets SC: M0M0M1A1.		
	A method of $T_n > 1000 \Rightarrow 256(0.75)^{n-1} > 1000$ can score M0M0M1A0 for a correct application of the power law of logarithms.		
	Trial & Improvement Method:		
	For $a = 256$ and $r = 0.75$, apply the following scheme:		
	$S_{13} = \frac{256(1 - (0.75)^{13})}{1 - 0.75} = 999.6725616$ Attempt to find either S_{13} or S_{14} . EITHER (1) $S_{13} = \text{awrt } 999.7$ or truncated	M1	
	$1 - 0.75$ EITHER (1) $S_{13} = a \text{wit } 777.7$ of truncated	M1	
	$999 \text{ GR} (2) S_{14} = \text{awit 1003.8 of } 1005.8 \text{ or } 1005.8$	1411	
	05.6(1 (0.75)14)	M1	
	$1 - 0.75$ BOTH (1) $S_{13} = \text{awrt } 999.7 \text{ or truncated}$		
		A1	
	So, $n = 14$. truncated 1005 AND $n = 14$.		

Question	Scheme	Marks	
Number	Note: A similar scheme would apply for T&I for candidates using their a and their r . So,.		
	1^{st} M1: For attempting to find one of the correct S_n 's either side (but next to) 1000.		
	2^{nd} M1: For one of these S_n 's correct for their a and their r . (You may need to get your calculators		
	out!) 2rd M1. For attempting to find both of the correct S 's either side (but payt to) 1000		
	3^{rd} M1: For attempting to find both of the correct S_n 's either side (but next to) 1000. A1: Cannot be gained for wrong a and/or r .		
	Trial & Improvement Cumulative Approach:		
	A similar scheme to T&I will be applied here:	,	
	1^{st} M1: For getting as far as the cumulative sum of 13 terms. 2^{nd} M1: (1) S_{13} = awrt 999.7 truncated 999. 3^{rd} M1: For getting as far as the cumulative sum to 14 terms. Also at this s		
	$S_{13} < 1000 \text{ and } S_{14} > 1000$. A1: BOTH (1) $S_{13} = \text{awrt } 999.7$ or truncated 999 AND (2)	iage	
	$S_{14} = \text{awrt } 1005.8 \text{ or truncated } 1005 \text{ AND } n = 14.$		
	Trial & Improvement Method: for $(0.75)^n < \frac{6}{256} = 0.0234375$		
	3^{rd} M1: For evidence of examining both $n = 13$ and $n = 14$.		
	Eg: $(0.75)^{13}$ { = 0.023757 } and $(0.75)^{14}$ { = 0.0178179 }		
	A1: $n = 14$		
	<u>Any misreads</u> , $S_n > 10000$ etc, please escalate up to your Team Leader.		
7.	(a) $3\sin(x+45^\circ) = 2$; $0 \le x < 360^\circ$ (b) $2\sin^2 x + 2 = 7\cos x$; $0 \le x < 2\pi$		
(a)	$\sin(x+45^\circ) = \frac{2}{3}$, so $(x+45^\circ) = 41.8103$ $(\alpha = 41.8103)$ $\sin^{-1}\left(\frac{2}{3}\right)$ or awrt 41.8	M1	
	or awrt 0.73°		
	So, $x + 45^{\circ} = \{138.1897, 401.8103\}$ $x + 45^{\circ} = \text{either "}180 - \text{their } \alpha \text{" or } \alpha \text{"} = 111$	M1	
	" 360° + their α " (α could be in radians). Either awrt 93.2° or awrt 356.8°	A 1	
	and $x = \{93.1897, 356.8103\}$ Both awrt 93.2° and awrt 356.8°	A1	
	Both awit 93.2 and awit 330.8	A1 [4]	
(b)	$2(1-\cos^2 x) + 2 = 7\cos x$ Applies $\sin^2 x = 1 - \cos^2 x$	M1	
	$2\cos^2 x + 7\cos x - 4 = 0$ Correct 3 term, $2\cos^2 x + 7\cos x - 4 = 0$	A1 oe	
	$(2\cos x - 1)(\cos x + 4) = 0$, $\cos x =$ Valid attempt at solving and $\cos x =$	M1	
	$\cos x = \frac{1}{2}, \left\{\cos x = -4\right\}$ $\cos x = \frac{1}{2} \text{(See notes.)}$	A1 cso	
	$\frac{\cos x - \frac{1}{2}}{2}, \left(\frac{\cos x - \frac{1}{2}}{2}\right)$	AT CSO	
	$\left(\beta = \frac{\pi}{3}\right)$		
	$x = \frac{\pi}{3}$ or 1.04719° Either $\frac{\pi}{3}$ or awrt 1.05°	B1	
	$x = \frac{5\pi}{3}$ or 5.23598° Either $\frac{5\pi}{3}$ or awrt 5.24° or 2π – their β (See notes.)	B1 ft	
		[6] 10	

Question Number	Scheme	Marks
(a)	1 st M1: can also be implied for $x = \text{awrt} - 3.2$	
	2^{nd} M1: for $x + 45^{\circ}$ = either "180 – their α " or "360° + their α ". This can be implied by la	ter
	working. The candidate's α could also be in radians.	
	Note that this mark is not for $x = \text{either "}180 - \text{their } \alpha \text{" or "}360^\circ + \text{their } \alpha \text{"}.$	
	Note: Imply the first two method marks or award M1M1A1 for either awrt 93.2° or awrt 35	56.8°.
	Note: Candidates who apply the following incorrect working of $3\sin(x + 45^\circ) = 2$	
	\Rightarrow 3(sin x + sin 45) = 2, etc will usually score M0M0A0A0.	
	If there are any EXTRA solutions inside the range $0 \le x < 360$ and the candidate would other	rwise
	score FULL MARKS then withhold the final aA2 mark (the final mark in this part of the queal Also ignore EXTRA solutions outside the range $0 \le x < 360$.	stion).
	Working in Radians: Note the answers in radians are $x = \text{awrt } 1.6$, awrt 6.2	
	If a candidate works in radians then mark part (a) as above awarding the A marks in the same If the candidate would then score FULL MARKS then withhold the final aA2 mark (the final this part of the question.)	
	No working: Award M1M1A1A0 for one of awrt 93.2° or awrt 356.8° seen without any w	orking.
	Award M1M1A1A1 for both awrt 93.2° and awrt 356.8° seen without any working.	
Allow benefit of the doubt (FULL MARKS) for final answer of		
	$\sin x \{ \text{and not } x \} = \{ \text{awrt } 93.2, \text{ awrt } 356.8 \}$	

Question		
Number	Scheme	Marks
(b)	1 st M1: for a correct method to use $\sin^2 x = 1 - \cos^2 x$ on the given equation.	
	Give bod if the candidate omits the bracket when substituting for $\sin^2 x$, but	
	$2 - \cos^2 x + 2 = 7\cos x$, without supporting working, (eg. seeing " $\sin^2 x = 1 - \cos^2 x$ ") would	ld score
	1 st M0.	
	Note that applying $\sin^2 x = \cos^2 x - 1$, scores M0.	
	1 st A1: for obtaining either $2\cos^2 x + 7\cos x - 4$ or $-2\cos^2 x - 7\cos x + 4$.	
	1 st A1: can also awarded for a correct three term equation eg. $2\cos^2 x + 7\cos x = 4$ or	
	$2\cos^2 x = 4 - 7\cos x$ etc. 2^{nd} M1: for a valid attempt at factorisation of a quadratic (either 2TQ or 3TQ) in cos, can use	anv
	variable here, c , y , x or $\cos x$, and an attempt to find at least one of the solutions. See introd	
	the Mark Scheme. Alternatively, using a correct formula for solving the quadratic. Either the	
	formula must be stated correctly or the correct form must be implied by the substitution.	
	2^{nd} A1: for $\cos x = \frac{1}{2}$, BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore 6	extra
	answer of $\cos x = -4$, but penalise if candidate states an incorrect result e.g. $\cos x = 4$. If the	y have
	used a substitution, a correct value of their c or their y or their x .	
	Note: 2^{nd} A1 for $\cos x = \frac{1}{2}$ can be implied by later working.	
	1 st B1: for either $\frac{\pi}{3}$ or awrt 1.05°	
	2^{nd} B1: for either $\frac{5\pi}{3}$ or awrt 5.24° or can be ft from 2π – their β or 360° – their β where	
	$\beta = \cos^{-1}(k)$, such that $0 < k < 1$ or $-1 < k < 0$, but $k \ne 0$, $k \ne 1$ or $k \ne -1$.	
	If there are any EXTRA solutions inside the range $0 \le x < 2\pi$ and the candidate would other	
	score FULL MARKS then withhold the final bB2 mark (the final mark in this part of the que Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$.	stion).
	Working in Degrees: Note the answers in degrees are $x = 60$, 300	
	If a candidate works in degrees then mark part (b) as above awarding the B marks in the same If the candidate would then score FULL MARKS then withhold the final bB2 mark (the final this part of the question.) Answers from no working:	-
	$x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$ scores M0A0M0A0B1B1,	
	x = 60 and $x = 300$ scores M0A0M0A0B1B0,	
	$x = \frac{\pi}{3}$ ONLY or $x = 60$ ONLY scores M0A0M0A0B1B0,	
	$x = \frac{5\pi}{3}$ ONLY or $x = 120$ ONLY scores M0A0M0A0B0B1.	
	No working: You cannot apply the ft in the B1ft if the answers are given with NO working.	
	Eg: $x = \frac{\pi}{5}$ and $x = \frac{9\pi}{3}$ FROM NO WORKING scores M0A0M0A0B0B0.	
	For candidates using trial & improvement, please forward these to your Team Leader.	

Question Number	Scheme	Marks
8. (a)	$\{V = \} \ 2x^2y = 81$ $2x^2y = 81$	B1 oe
(a)	$\left\{ L = 2(2x + x + 2x + x) + 4y \implies L = 12x + 4y \right\}$	
	$y = \frac{81}{2x^2} \Rightarrow L = 12x + 4\left(\frac{81}{2x^2}\right)$ Making y the subject of their expression and substitute this into the correct L formula.	M1
	So, $L = 12x + \frac{162}{x^2}$ AG Correct solution only. AG.	A1 cso
		[3]
(b)	$\frac{dL}{dx} = 12 - \frac{324}{x^3} \left\{ = 12 - 324x^{-3} \right\}$ Either $12x \to 12$ or $\frac{162}{x^2} \to \frac{\pm \lambda}{x^3}$	M1
	Correct differentiation (need not be simplified).	A1 aef
	$\begin{cases} \frac{dL}{dr} = \begin{cases} 12 - \frac{324}{r^3} = 0 \implies x^3 = \frac{324}{12}; = 27 \implies x = 3 \end{cases}$ $L' = 0 \text{ and "their } x^3 = \pm \text{ value"}$ or "their $x^{-3} = \pm \text{ value"}$	M1;
	$x = \sqrt[3]{27} \text{ or } x = 3$	A1 cso
	$\{x = 3,\}$ $L = 12(3) + \frac{162}{3^2} = 54$ (cm) Substitute candidate's value of $x \neq 0$ into a formula for L .	ddM1
	$\frac{3^2}{54}$	A1 cao [6]
	Correct ft L'' and considering sign.	M1
(c)	$\{\text{For } x = 3\}, \ \frac{\mathrm{d}^2 L}{\mathrm{d}x^2} = \frac{972}{x^4} > 0 \implies \text{Minimum}$	A1 [2]
		11
(a)	B1: For any correct form of $2x^2y = 81$. (may be unsimplified). Note that $2x^3 = 81$ is B0. O candidates can use any symbol or letter in place of y.	therwise,
(b)	M1: Making y the subject of their formula and substituting this into a correct expression for hal: Correct solution only. Note that the answer is given. Note you can mark parts (b) and (c) together.	L.
	2^{nd} M1: Setting their $\frac{dL}{dt} = 0$ and "candidate's ft correct power of $x = a$ value". The power of	of x must
	be consistent with their differentiation. If inequalities are used this mark cannot be gained un candidate states value of x or L from their x without inequalities. $L' = 0 \text{ can be implied by } 12 = \frac{324}{x^3}.$	
	$2^{\text{nd}} \text{ A1: } x^3 = 27 \implies x = \pm 3 \text{ scores A0.}$	
	2^{nd} A1: can be given for no value of x given but followed through by correct working leading $L = 54$.	g to
(c)	3 rd M1: Note that this method mark is dependent upon the two previous method marks being M1: for attempting correct ft second derivative and <u>considering its sign</u> .	awarded.
	A1: Correct second derivative of $\frac{972}{r^4}$ (need not be simplified) and a valid reason (e.g. > 0),	<u>and</u>
	conclusion. Need to conclude minimum (allow x and not L is a minimum) or indicate by a tick that it is a minimum. The actual value of the second derivative, if found, can be ignored, although substituting their L and not x into L'' is A0. Note: 2 marks can be scored from a wrong value of x , no value of x found or from not substituting in the value of their x into L'' . Gradient test or testing values either side of their x scores M0A0 in part (c).	
	Throughout this question allow confused notation such as $\frac{dy}{dx}$ for $\frac{dL}{dx}$.	

Question Number	Scheme	Marks
9.	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$	
(a)	{Curve = Line} \Rightarrow - x^2 + 2 x + 24 = x + 4 Eliminating y correctly.	B1
	$x^2 - x - 20 = 0$ $\Rightarrow (x - 5)(x + 4) = 0$ $\Rightarrow x =$ Attempt to solve a resulting quadratic to give $x =$ their values.	M1
	So, $x = 5, -4$ Both $x = 5$ and $x = -4$.	A1
	So corresponding y-values are $y = 9$ and $y = 0$. See notes below.	B1ft [4]
(b)	$\left\{ \int (-x^2 + 2x + 24) dx \right\} = -\frac{x^3}{3} + \frac{2x^2}{2} + 24x \left\{ + \epsilon \right\}$ $1^{\text{st}} \text{ A1 at least two out of three terms.}$ $2^{\text{nd}} \text{ A1 for correct answer.}$	M1A1A1
	$\left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{5} = () - ()$ Substitutes 5 and -4 (or their limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1
	$\left\{ \left(-\frac{125}{3} + 25 + 120 \right) - \left(\frac{64}{3} + 16 - 96 \right) = \left(103\frac{1}{3} \right) - \left(-58\frac{2}{3} \right) = 162 \right\}$	
	Area of $\Delta = \frac{1}{2}(9)(9) = 40.5$ Uses correct method for finding area of triangle.	M1
	So area of R is $162 - 40.5 = 121.5$ Area under curve – Area of triangle.	M1
	121.5	Al oe cao
		[7] 11

Question Number	Scheme	Marks
(a)	1st B1: For correctly eliminating either x or y . Candidates will usually write $-x^2 + 2x + 24$. This mark can be implied by the resulting quadratic. M1: For solving their quadratic (which must be different to $-x^2 + 2x + 24$) to give $x =$ introduction for Method mark for solving a 3TQ. It must result from some attempt to eliminate the variables. A1: For both $x = 5$ and $x = -4$. 2^{nd} B1ft: For correctly substituting their values of x in equation of line or parabola to give boo y -values. (You may have to get your calculators out if they substitute their x into $y = -x^2 + 2$. Note: For $x = 5, -4 \Rightarrow y = 9$ and $y = 0 \Rightarrow \text{eg.}(-4, 9)$ and $(5, 0)$, award B1 isw. If the candidate gives additional answers to $(-4, 0)$ and $(5, 9)$, then withhold the final B1 may special Case: Award SC: B0M0A0B1 for $\{A\}(-4, 0)$. You may see this point marked on the Note: SC: B0M0A0B1 for solving $0 = -x^2 + 2x + 24$ to give $\{A\}(-4, 0)$ and/or $(6, 10)$.	See ate one of th correct ft $2x + 24$). ark. the diagram.
(b)	Note: Do not give marks for working in part (b) which would be creditable in part (a) 1^{st} M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms Note that $24 \to 24x$ is sufficient for M1. 1^{st} A1 at least two out of three terms correctly integrated. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+c'. 2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the candidate has found from part(a)) into an "integrated function" and subtracts, either w one slip! 3^{rd} M1: Area of triangle $=\frac{1}{2}$ (their x_2 – their x_1)(their y_2) or Area of triangle $=\int_{x_1}^{x_2} x^2 dx^2$ Where x_1 = their -4 , x_2 = their 5 and y_2 = their y usually found in part (a). 4^{th} M1: Area under curve – Area under triangle, where both Area under curve > 0 and Area under triangle > 0 and Area under curve > Area under triangle. 3^{rd} A1: 121.5 or $\frac{243}{2}$ oe cao.	

Question Number	Scheme	Marks
Number	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$ 3^{rd} M1: Uses integral of $(x + 4)$ with	
Aliter 9.(b) Way 2	Area of $R = \int_{-4}^{5} (-x^2 + 2x + 24) - (x + 4) dx$ correct ft limits. 4 th M1: Uses "curve" - "line" function with correct ft limits.	
	$x^3 x^2$ M: $x^n o x^{n+1}$ for any one term.	M1
	$= -\frac{x^3}{3} + \frac{x^2}{2} + 20x \{+c\}$ A1 at least two out of three terms Correct answer (Ignore + c).	A1ft A1
	$\left[-\frac{x^3}{3} + \frac{x^2}{2} + 20x \right]_{-4}^{5} = () - ()$ Substitutes 5 and -4 (or <i>their limits</i> from part(a)) into an "integrated function" and subtracts, either way round.	dM1
	$\left\{ \left(-\frac{125}{3} + \frac{25}{2} + 100 \right) - \left(\frac{64}{3} + 8 - 80 \right) = \left(70\frac{5}{6} \right) - \left(-50\frac{2}{3} \right) \right\}$	
	See above working to decide to award 3 rd M1 mark here:	M1
	See above working to decide to award 4 th M1 mark here:	M1
	So area of R is = 121.5	A1 oe cao
		[7] 11
(b)	1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms.	
	Note that $20 \rightarrow 20x$ is sufficient for M1.	
	1^{st} A1 at least two out of three terms correctly ft. Note this accuracy mark is ft in Way 2. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+ c'.	
	Allow 2 nd A1 also for $-\frac{x^3}{3} + \frac{2x^2}{2} + 24x - \left(\frac{x^2}{2} + 4x\right)$. Note that $\frac{2x^2}{2} - \frac{x^2}{2}$ or $24x - 4x$	only counts
	as one integrated term for the 1 st A1 mark. Do not allow any extra terms for the 2 nd A1 mark 2 nd M1: Note that this method mark is dependent upon the award of the first M1 mark in pa Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limit candidate has found from part(a)) into an "integrated function" and subtracts, either way rou one slip!	rt (b). s the and. Allow
	3 rd M1: Uses the integral of $(x + 4)$ with correct ft limits of their x_1 and their x_2 (usually for	-
	(a)) {where $(x_1, y_1) = (-4, 0)$ and $(x_2, y_2) = (5, 9)$.} This mark is usually found in the first candidate's working in part (b). 4 th M1: Uses "curve" – "line" function with correct ft (usually found in part (a)) limits. Subbe correct way round. This mark is usually found in the first line of the candidate's working	traction must
	Allow $\int_{-4}^{5} (-x^2 + 2x + 24) - x + 4 \{dx\}$ for this method mark.	
	3 rd A1: 121.5 oe cao. Note: SPECIAL CASE for this alternative method	
	Area of $R = \int_{-4}^{5} (x^2 - x - 20) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 20x \right]_{-4}^{5} = \left(\frac{125}{3} - \frac{25}{2} - 100 \right) - \left(-\frac{64}{3} - 8 + 80 \right)$	0)
	The working so far would score SPEICAL CASE M1A1A1M1M1M0A0.	
	The candidate may then go on to state that $=\left(-70\frac{5}{6}\right) - \left(50\frac{2}{3}\right) = -\frac{243}{2}$	
	If the candidate then multiplies their answer by -1 then they would gain the 4 th M1 and 121.5 the final A1 mark.	5 would gain

Question Number	Scheme	Marks
Aliter	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$	
9. (a)	{Curve = Line} $\Rightarrow y = -(y-4)^2 + 2(y-4) + 24$ Eliminating x correctly.	B1
Way 2	$y^2 - 9y = 0$ $\Rightarrow y(y - 9) = 0$ $\Rightarrow y =$ Attempt to solve a resulting quadratic to give $y = 0$ their values.	M1
	So, $y = 0, 9$ Both $y = 0$ and $y = 9$.	A1
	So corresponding y-values are $x = -4$ and $x = 5$. See notes below.	B1ft [4]
	2^{nd} B1ft: For correctly substituting their values of y in equation of line or parabola to give b ox-values.	
9. (b)	Alternative Methods for obtaining the M1 mark for use of limits: There are two alternative methods can candidates can apply for finding "162". Alternative 1: $\int_{-4}^{0} (-x^2 + 2x + 24) dx + \int_{0}^{5} (-x^2 + 2x + 24) dx$ $= \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{0} + \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{0}^{5}$ $= (0) - \left(\frac{64}{3} + 16 - 96 \right) + \left(-\frac{125}{3} + 25 + 120 \right) - (0)$ $= \left(103\frac{1}{3} \right) - \left(-58\frac{2}{3} \right) = 162$ Alternative 2: $\int_{-4}^{6} (-x^2 + 2x + 24) dx - \int_{5}^{6} (-x^2 + 2x + 24) dx$ $= \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{6} - \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{5}^{6}$ $= \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(\frac{64}{3} + 16 - 96 \right) \right\} - \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(-\frac{125}{3} + 2x \right) \right\}$ $= \left\{ (108) - \left(-58\frac{2}{3} \right) \right\} - \left\{ (108) - \left(103\frac{1}{3} \right) \right\}$ $= \left(166\frac{2}{3} \right) - \left(4\frac{2}{3} \right) = 162$	25 + 120)}

Marks

Appendix

List of Abbreviations

- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ft or $\sqrt{}$ denotes "follow through"
- cao denotes "correct answer only"
- aef denotes "any equivalent form"
- cso denotes "correct solution only"
- AG or * denotes "answer given" (in the question paper.)
- awrt denotes "anything that rounds to"
- aliter denotes "alternative methods"

Extra Solutions

Question

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Scheme

Number	Scheme	With
	$(x+2)^2 + (y-1)^2 = 16$, centre $(x_1, y_1) = (-2, 1)$ and radius $r = 4$.	
Aliter	$d_1 = \sqrt{4^2 - 2^2} = \sqrt{12}$ Applying $\sqrt{\text{their } r^2 - \left \text{their } x_1 \right ^2}$	M1
4. (c)	$\sqrt{12}$	A1 aef
Way 2	Hence, $y = 1 \pm \sqrt{12}$ Applies $y = \text{their } d$	M1
	Hence, $y = 1 \pm \sqrt{12}$ Applies $y = \text{their } y_1 \pm \text{ their } d$ So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$	A1 cao
	1=2,0	cso
		[4]
	Special Case: Award Final SC: M1A1 M1A0 if candidate achieves any one of either	
	$y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{12}$.	
		1
Aliter 8. (a)	$2x^2 \left(\frac{L-12x}{4}\right) = 81$ $2x^2 \left(\frac{L-12x}{4}\right) = 81$	B1 oe
Way 2	Rearranges their equation to make y the subject.	M1
	$\Rightarrow x^2(L-12x) = 162 \Rightarrow L = 12x + \frac{162}{x^2}$ Rearranges their equation to make y the subject. Correct solution only. AG.	A1 cso
		[3]