Write your name here		
Surname	Other	names
Pearson Edexcel GCE	Centre Number	Candidate Number
Core Mat Advanced Subsid		:s C1
Wednesday 18 May 201 Time: 1 hour 30 minute		Paper Reference 6663/01

Calculators may NOT be used in this examination.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1. Find

$$\int \left(2x^4 - \frac{4}{\sqrt{x}} + 3\right) \mathrm{d}x$$

giving each term in its simplest form.

(Total 4 marks)

2. Express 9^{3x+1} in the form 3^y , giving y in the form ax + b, where a and b are constants.

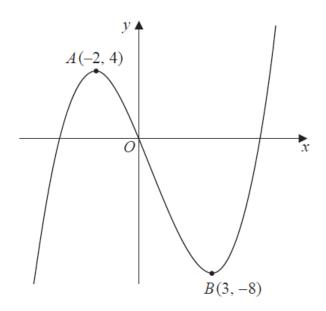
(Total 2 marks)

3. (*a*) Simplify

$$\sqrt{50} - \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where *a* is an integer.

(2)


(b) Hence, or otherwise, simplify

$$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$$

giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b \neq 1$.

(3)

(Total 5 marks)

Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x). The curve has a maximum point *A* at (-2, 4) and a minimum point *B* at (3, -8) and passes through the origin *O*.

On separate diagrams, sketch the curve with equation

(a)
$$y = 3f(x)$$
, (2)

(b)
$$y = f(x) - 4$$
.

On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the *y*-axis.

(Total 5 marks)

(3)

5. Solve the simultaneous equations

$$y + 4x + 1 = 0$$
$$y^2 + 5x^2 + 2x = 0$$

(Total 6 marks)

6. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 4,$$

$$a_{n+1} = 5 - ka_n, \quad n \ge 1,$$

where *k* is a constant.

(a) Write down expressions for a_2 and a_3 in terms of k.

Find

(b)
$$\sum_{r=1}^{3} (1+a_r)$$
 in terms of k, giving your answer in its simplest form,
(3)

(c)
$$\sum_{r=1}^{100} (a_{r+1} + ka_r)$$
. (1)

(Total 6 marks)

(2)

7. Given that

$$y = 3x^{2} + 6x^{\frac{1}{3}} + \frac{2x^{3} - 7}{3\sqrt{x}}, \quad x > 0,$$

find $\frac{dy}{dx}$. Give each term in your answer in its simplified form.

(Total 6 marks)

- 8. The straight line with equation y = 3x 7 does not cross or touch the curve with equation $y = 2px^2 6px + 4p$, where p is a constant.
 - (a) Show that $4p^2 20p + 9 < 0$.
 - (*b*) Hence find the set of possible values of *p*.

(4)

(4)

(Total 8 marks)

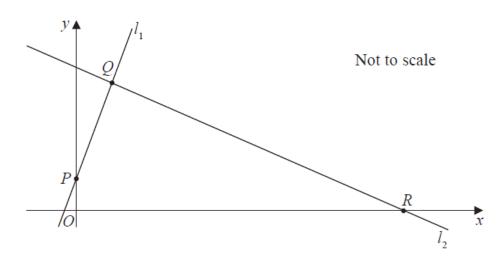
- **9.** On John's 10th birthday he received the first of an annual birthday gift of money from his uncle. This first gift was £60 and on each subsequent birthday the gift was £15 more than the year before. The amounts of these gifts form an arithmetic sequence.
 - (a) Show that, immediately after his 12th birthday, the total of these gifts was £225.

(1)

(3)

- (b) Find the amount that John received from his uncle as a birthday gift on his 18th birthday. (2)
- (c) Find the total of these birthday gifts that John had received from his uncle up to and including his 21st birthday.

When John had received n of these birthday gifts, the total money that he had received from these gifts was £3375.


(*d*) Show that $n^2 + 7n = 25 \times 18$.

at this time.

(a) (b) (c) Find the value of n, when he had received £3375 in total, and so determine John's age

(2)

(Total 11 marks)

The points P(0, 2) and Q(3, 7) lie on the line l_1 , as shown in Figure 2.

The line l_2 is perpendicular to l_1 , passes through Q and crosses the x-axis at the point R, as shown in Figure 2.

Find

- (a) an equation for l₂, giving your answer in the form ax + by + c = 0, where a, b and c are integers,
 (5)
 (b) the exact coordinates of R,
 (2)
- (c) the exact area of the quadrilateral ORQP, where O is the origin.

(5)

(Total 12 marks)

10.

11. The curve C has equation $y = 2x^3 + kx^2 + 5x + 6$, where k is a constant.

(a) Find
$$\frac{dy}{dx}$$
.

(2)

The point *P*, where x = -2, lies on *C*.

The tangent to *C* at the point *P* is parallel to the line with equation 2y - 17x - 1 = 0.

Find

- (b) the value of k,
- (c) the value of the y coordinate of P,

(2)

(4)

- (d) the equation of the tangent to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
 - (2)
 - (Total 10 marks)

TOTAL FOR PAPER: 75 MARKS

Question Number	Scheme	Notes	Marks
1	$\int (2x^4 - \frac{4}{\sqrt{x}} + 3)dx$		
	$\frac{2}{5}x^5 - \frac{4}{\frac{1}{2}}x^{\frac{1}{2}} + 3x$	M1: $x^n \to x^{n+1}$. One power increased by 1 but not for just + c. This could be for $3 \to 3x$ or for $x^n \to x^{n+1}$ on what they think $\frac{1}{\sqrt{x}}$ is as a power of x. A1: One of these 3 terms correct. Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$ A1: Two of these 3 terms correct. $2x^{4+1} \to 4^{-\frac{1}{2}+1}$	M1A1A1
		Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$	
	$=\frac{2}{5}x^5 - 8x^{\frac{1}{2}} + 3x + c$	Complete fully correct simplified expression appearing all on one line with constant. Allow 0.4 for $\frac{2}{5}$. Do not allow $3x^1$ for $3x$ Allow \sqrt{x} or $x^{0.5}$ for $x^{\frac{1}{2}}$	A1
	Ignore any spurious inte	gral signs and ignore subsequent working following a fully	
		correct answer.	E 4 1
			[4] 4 marks
			-1 mai 135

Question Number	Scheme	Notes	Marks
2	$9^{3x+1} = \text{for example}$ $3^{2(3x+1)} \text{ or } (3^2)^{3x+1} \text{ or } (3^{(3x+1)})^2 \text{ or } 3^{3x+1} \times 3^{3x+1}$ $\text{or } (3\times3)^{3x+1} \text{ or } 3^2 \times (3^2)^{3x} \text{ or } (9^{\frac{1}{2}})^y \text{ or } 9^{\frac{1}{2}y}$	Expresses 9^{3x+1} correctly as a power of 3 or expresses 3^y correctly as a power of 9 or expresses y correctly in terms of x	M1
	or $y = 2(3x+1)$	(This mark is <u>not</u> for just $3^2 = 9$)	
	= 3^{6x+2} or $y = 6x + 2$ or $a = 6, b = 2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, allow sight of $6x + 2$ to score both marks Correct answer only implies both marks		
	Special case: 3 ^{6x+1} on	ly scores M1A0	
			[2]
	Alternative u	ising logs	
	$9^{3x+1} = 3^y \Longrightarrow \log 9^{3x+1} = \log 3^y$		
	$(3x+1)\log 9 = y\log 3$	Use power law correctly on both sides	M1
	$y = \frac{\log 9}{\log 3} (3x+1)$		
	y = 6x + 2	cao	A1
			2 marks

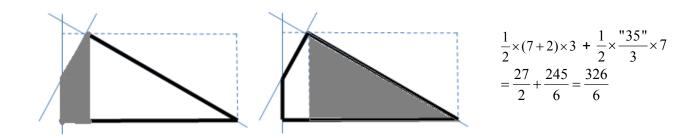
Question	Scheme	Notes	Ma	rks
Number				
3.(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1	
	$= 2\sqrt{2}$	Or $a = 2$	A1	
				[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1	
	$=\frac{12\sqrt{3}}{"2"\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}=\frac{12\sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1	
				[3]
(b) WAY 2	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$ or $\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k\left(\sqrt{50} + \sqrt{18}\right)$	M1	
	$\frac{60\sqrt{6} + 36\sqrt{6}}{50 - 18}$	For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1	
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1	
				[3]
(b) WAY 3	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1	
	$=\frac{12\sqrt{3}}{2\sqrt{2}}=\frac{6\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9}\sqrt{6}$	Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso	A1	
		Uses mont (a) has nonlasing demensioneters have the		[3]
(b) WAY 4	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1	
	$\left(\frac{12\sqrt{3}}{n_2n_2\sqrt{2}}\right)^2 = \frac{432}{8}$			
	$\sqrt{54} = \sqrt{9}\sqrt{6}$	Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso (do not allow $\pm 3\sqrt{6}$)	A1	
			5 ma	ırks

Question Number	Scheme	Notes	Marks			
	Note original points are $A(-2, 4)$ and $B(3, -8)$					
4.(a)	(-2, 12)	Similar shape to given figure passing through the origin. A cubic shape with a maximum in the second quadrant and a minimum in the 4^{th} quadrant. There must be evidence of a change in at least one of the y-coordinates (inconsistent changes in the y-coordinates are acceptable) but not the <i>x</i> - coordinates .	B1			
	(3, -24)	Maximum at (-2, 12) and minimum at $(3, -24)$ with coordinates written the right way round. Condone missing brackets. The coordinates may appear on the sketch, or separately in the text (not necessarily referenced as <i>A</i> and <i>B</i>). If they are on the sketch, the <i>x</i> and <i>y</i> coordinates can be positioned correctly on the axes rather than given as coordinate pairs. In cases of ambiguity, the sketch has precedence. The origin does not need to be labelled. Nor do the <i>x</i> and <i>y</i> axes.	B1			
			[2]			
(b)	Ť	A positive cubic which does not pass through the origin with a maximum to the left of the <i>y</i> -axis and a minimum to the right of the <i>y</i> -axis.	M1			
	(-2, 0)	Maximum at $(-2, 0)$ and minimum at $(3, -12)$. Condone missing brackets. For the max allow just -2 or $(0, -2)$ if marked in the correct place. If the coordinates are in the text, they must appear as $(-2, 0)$ and must not contradict the sketch. The curve must touch the <i>x</i> -axis at $(-2, 0)$. For the min allow coordinates as shown or 3 and -12 to be marked in the correct places on the axes. In cases of ambiguity, the sketch has precedence.	A1			
	(3, -12)	Crosses y-axis at $(0, -4)$. Allow just -4 (not +4) and allow (-4, 0) if marked in the correct place. If the coordinates are in the text, they must appear as $(0, -4)$ and must not contradict the sketch. In cases of ambiguity, the sketch has precedence.	A1			
			[3]			
			5 marks			

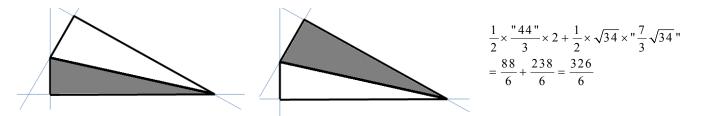
Question Number	Scheme	Notes	Marks		
•••	WA	AY 1			
	y = -4x - 1	Attempts to makes <i>y</i> the subject of the linear			
5.	$\Rightarrow (-4x-1)^2 + 5x^2 + 2x = 0$	equation and substitutes into the other equation. Allow slips e.g. substituting $y = -4x + 1$ etc.	M1		
	$21x^2 + 10x + 1 = 0$	Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work.	A1		
	$(7x+1)(3x+1)=0 \Longrightarrow (x=)-\frac{1}{7}, -\frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for <i>x</i> . Dependent on the first method mark. A1: $(x =) - \frac{1}{7}, -\frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(x =) - \frac{6}{42}, -\frac{14}{42}$	dM1 A1		
	$y = -\frac{3}{7}, \frac{1}{3}$	M1: Substitutes to find at least one y value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and x values are incorrect. A1: $y = -\frac{3}{7}$, $\frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $y = -\frac{18}{42}$, $\frac{14}{42}$	M1 A1		
	Coordinates do not need to be paired				
	Note that if the linear equation is explicitly rearranged to $y = 4x + 1$, this gives the correct				
	answers for x and possibly for y. In these cas	es, if it is not already lost, deduct the final A1.			
			[6]		
		AY 2			
	$x = -\frac{1}{4}y - \frac{1}{4}$ $\Rightarrow y^{2} + 5(-\frac{1}{4}y - \frac{1}{4})^{2} + 2(-\frac{1}{4}y - \frac{1}{4}) = 0$	Attempts to makes <i>x</i> the subject of the linear equation and substitutes into the other equation. Allow slips in the rearrangement as above.	M1		
	$\frac{21}{16}y^2 + \frac{1}{8}y - \frac{3}{16} = 0 \left(21y^2 + 2y - 3 = 0\right)$	Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work.	A1		
	$(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{3}{7}, \frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for y. Dependent on the first method mark. A1: $(y =) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(y =) - \frac{18}{42}, \frac{14}{42}$	dM1 A1		
	$x = -\frac{1}{7}, -\frac{1}{3}$	M1: Substitutes to find at least one <i>x</i> value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and <i>y</i> values are incorrect. A1: $x = -\frac{1}{7}$, $-\frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $x = -\frac{6}{42}$, $-\frac{14}{42}$	M1 A1		
	Coordinator J				
		bt need to be paired earranged to $x = (y + 1)/4$, this gives the correct			
	1 TYORE that is the inteal equation is explicitly re	•			
	answers for v and possibly for r . In these cas	es, if it is not already lost, deduct the final $\Delta 1$			
	answers for <i>y</i> and possibly for <i>x</i> . In these cas	es, if it is not already lost, deduct the final A1.	[6		

Question Number	Scheme Notes				
	$a_1 = 4, \ a_{n+1} = 5 - k$	$a_n, n1$			
6. (a)	$a_2 = 5 - ka_1 = 5 - 4k$ $a_3 = 5 - ka_2 = 5 - k(5 - 4k)$	M1: Uses the recurrence relation correctly at least once. This may be implied by $a_2 = 5-4k$ or by the use of $a_3 = 5-k$ (their a_2) A1: Two correct expressions – need not be simplified but must be seen in (a).	M1A1		
		Allow $a_2 = 5-k4$ and $a_3 = 5-5k+k^24$ Isw if necessary for a_3 .			
			[2]		
(b)	$\sum_{r=1}^{3} (1) = 1 + 1 + 1$	Finds 1+1+1 or 3 somewhere in their solution (may be implied by e.g. $5 + 6 - 4k$ $+ 6 - 5k + 4k^2$). Note that $5 + 6 - 4k + 6 - 5k + 4k^2$ would score B1 and the M1 below.	B1		
	$\sum_{r=1}^{3} a_r = 4 + "5 - 4k" + "5 - 5k + 4k^2"$	Adds 4 to their a_2 and their a_3 where a_2 and a_3 are functions of k. The statement as shown is sufficient.	M1		
	$\sum_{r=1}^{3} (1+a_r) = 17 - 9k + 4k^2$	Cao but condone '= 0' after the expression	A1		
	Allow full marks in (b) for c	correct answer only			
			[3]		
(c)	500	cao	B1		
			[1]		
			6 marks		

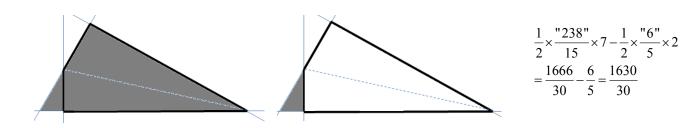
Question Number	Scheme	Notes	Marks
7.	$y = 3x^2 + 6x^2$	$\frac{1}{3} + \frac{2x^3 - 7}{3\sqrt{x}}$	
	$\frac{2x^3 - 7}{3\sqrt{x}} = \frac{2x^3}{3\sqrt{x}} - \frac{7}{3\sqrt{x}} = \frac{2}{3}x^{\frac{5}{2}} - \frac{7}{3}x^{-\frac{1}{2}}$	Attempts to split the fraction into 2 terms and obtains either $\alpha x^{\frac{5}{2}}$ or $\beta x^{-\frac{1}{2}}$. This may be implied by a correct power of x in their differentiation of one of these terms. But beware of $\beta x^{-\frac{1}{2}}$ coming from $\frac{2x^3 - 7}{3\sqrt{x}} = 2x^3 - 7 + 3x^{-\frac{1}{2}}$	M1
	$x^n \rightarrow x^{n-1}$	Differentiates by reducing power by one for any of their powers of x	M1
		A1: 6x. Do not accept $6x^1$. Depends on second M mark only. Award when first seen and isw.	
		A1: $2x^{-\frac{2}{3}}$. Must be simplified so do not	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x + 2x^{-\frac{2}{3}} + \frac{5}{3}x^{\frac{3}{2}} + \frac{7}{6}x^{-\frac{3}{2}}$	accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends	
		on second M mark only. Award when first seen and isw.	
		A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g.	A1A1A1A1
		$1\frac{2}{3}x^{1.5}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw.	
		A1: $\frac{7}{6}x^{-\frac{3}{2}}$. Must be simplified but allow e.g.	
		$1\frac{1}{6}x^{-1\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw.	
	In an otherwise <u>fully correct solution</u> , penalis	se the presence of + c by deducting the final	
	A1	L	[6]
	Use of Quotient Rule: First M1 and f	final A1A1 (Other marks as above)	
	$\frac{d\left(\frac{2x^{3}-7}{3\sqrt{x}}\right)}{dx} = \frac{3\sqrt{x}\left(6x^{2}\right) - \left(2x^{3}-7\right)\frac{3}{2}x^{-\frac{1}{2}}}{\left(3\sqrt{x}\right)^{2}}$	Uses <u>correct</u> quotient rule	M1
	$=\frac{10x^{2}+7x^{-2}}{6x}$	A1: Correct first term of numerator and correct denominator A1: All correct as simplified as shown	A1A1
	So $\frac{dy}{dx} = 6x + 2x^{-\frac{2}{3}} + \frac{10x^{\frac{5}{2}}}{10x^{\frac{5}{2}}}$	$\frac{1}{6x} + 7x^{-\frac{1}{2}}$ scores full marks	
	<u> </u>		6 marks

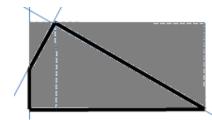

Question Number	Scheme	Notes	Marks			
8. (a)	$2px^{2} - 6px + 4p'' = "3x - 7$ or $y = 2p\left(\frac{y+7}{3}\right)^{2} - 6p\left(\frac{y+7}{3}\right) + 4p$	Either: Compares the given quadratic expression with the given linear expression using $\langle , \rangle $, = , \neq (May be implied) or Rearranges $y = 3x - 7$ to make x the subject and substitutes into the given quadratic	M1			
	$2px^{2}-6px+4p-3x+7(=0)$ $2p\left(\frac{y+7}{3}\right)^{2}-6p\left(\frac{y+7}{3}\right)+4p-y\left(\frac{y+7}{3}\right)+2px^{2}-6p\left(\frac{y+7}{3}\right)+4p-y\left(\frac{y+7}{3$	$\frac{\text{amples}}{(x^2 - 2px^2 + 6px - 4p + 3x - 7(=0))}$ $= 0), 2py^2 + (10p - 9)y + 8p(=0)$ $\frac{6px + 4p - 3x + 7}{\text{g sign errors only. Ignore } > 0, < 0, = 0 \text{ etc.}}$	dM1			
	The terms do not need to be collected. Dependent on the first method mark.					
	E.g. $b^2 - 4ac = (-6p - 3)^2 - 4(2p)(4p + 7)$ $b^2 - 4ac = (10p - 9)^2 - 4(2p)(8p)$	Attempts to use $b^2 - 4ac$ with their <i>a</i> , <i>b</i> and <i>c</i> where $a = \pm 2p$, $b = \pm (-6p \pm 3)$ and $c = \pm (4p \pm 7)$ or for the quadratic in <i>y</i> , $a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no <i>x</i> 's or <i>y</i> 's. Dependent on both method marks.	ddM1			
	$4p^2 - 20p + 9 < 0 *$	Obtains printed answer with no errors seen (Allow $0 > 4p^2 - 20p + 9$) but this < 0 must been seen at some stage before the last line.	A1*			
(b)	$(2p-9)(2p-1)=0 \Longrightarrow p=$ to obtain $p=$	Attempt to solve the given quadratic to find 2 values for <i>p</i> . See general guidance.	[4] M1			
	$p = \frac{9}{2}, \frac{1}{2}$	Both correct. May be implied by e.g. $p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g. 4.5, $\frac{36}{8}$, 0.5 etc. If they use the quadratic formula allow $\frac{20\pm16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2}\pm2$ if they complete the square. M1: Chooses 'inside' region i.e.	A1			
	$\frac{1}{2} Allow equivalent values e.g. \frac{36}{8} for 4\frac{1}{2}$	Lower Limit $ Upper Limit or e.g.Lower Limit \le p \le Upper LimitA1: Allow p \in (\frac{1}{2}, 4\frac{1}{2}) or just (\frac{1}{2}, 4\frac{1}{2}) andallow p > \frac{1}{2} and p < 4\frac{1}{2} and 4\frac{1}{2} > p > \frac{1}{2} butp > \frac{1}{2}, p < 4\frac{1}{2} scores M1A0\frac{1}{2} > p > 4\frac{1}{2} scores M0A0$	M1A1			
	Allow working in terms of x in (b) but the an	swer must be in terms of <i>p</i> for the final A mark.	[4]			
			8 marks			

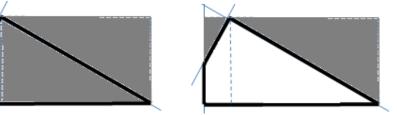
Question Number	Scheme	Notes	Marks			
9.(a)	John; arithmetic series,	a = 60, d = 15.				
-	$60 + 75 + 90 = 225^*$ or	Finds and adds the first 3 terms or uses				
	$S_3 = \frac{3}{2} (120 + (3-1)(15)) = 225 *$	sum of 3 terms of an AP and obtains the	B1 *			
	L	printed answer, with no errors.				
	<u>Beware</u> The 12 th term of the sequence is 225 also so look	$\frac{1}{12}$ x out for $60 + (12 - 1) \times 15 = 225$. This is B0.				
			[1]			
(b)	$t_9 = 60 + (n-1)15 = (\pounds)180$	M1: Uses $60 + (n - 1)15$ with $n = 8$ or 9	M1 A1			
-		A1: (£)180				
	M1: Uses $a = 60$ and $d = 15$ to select the 8 th or 9 th term (allow arithmetic slips) A1: (£)180					
	(Special case (£)165 only scores M1A0)					
		• · · · · · · · · · · · · · · · · · · ·	[2]			
	$S_n = \frac{n}{2} (120 + (n-1)(15))$	Uses correct formula for sum of <i>n</i> terms				
(c)	2	with $a = 60$ and $d = 15$ (must be a correct				
	or	formula but ignore the value they use for	M1			
	$S_n = \frac{n}{2} (60 + 60 + (n-1)(15))$	n or could be in terms of n)				
	$S_n = \frac{12}{2} (120 + (12 - 1)(15))$	Correct numerical expression	A1			
_	$=(\pounds)1710$	cao	A1			
-	ListingM1: Uses $a = 60$ and $d = 15$ and finds the sum orA2: (£)17	f at least 12 terms (allow arithmetic slips)	[2]			
(d)	11	Uses correct formula for sum of <i>n</i> terms	[3]			
(u)	$3375 = \frac{n}{2} (120 + (n-1)(15))$	with $a = 60$, $d = 15$ and puts = 3375	M1			
		Correct three term quadratic. E.g.				
		$6750 = 105n + 15n^2, 3375 = \frac{15}{2}n^2 + \frac{105}{2}n$				
	$6750 = 15n(8 + (n - 1)) \Rightarrow 15n^{2} + 105n = 6750$	This may be implied by equations such as	A1			
		6750 = $15n(n+7)$ or $3375 = \frac{15}{2}(n^2+7n)$				
-		Achieves the printed answer with no				
	$n^2 + 7n = 25 \times 18^*$	errors but must see the 450 or 450 in	A1*			
		factorised form or e.g. 6750, 3375 in factorised form i.e. an intermediate step.				
-		1 actoriseu form i.e. an intermediate step.	[3]			
(e)		M1: Attempts to solve the given quadratic				
(0)	$n = 18 \Rightarrow \text{Aged} 27$	or states $n = 18$	M1 A1			
		A1: Age = 27 or just 27				
F		Age = 27 only scores both marks (i.e. $n = 18$ need not be seen)				
-		i.e. $n = 18$ need not be seen)				
-	Age = 27 only scores both marks (i Note that (e) is not hence so allow valid attem	i.e. $n = 18$ need not be seen)	[2]			


п	1	2	3	4	5	6	7	8	9
u_n	60	75	90	105	120	135	150	165	180
\mathbf{S}_n	60	135	225	330	450	585	735	900	1080
Age	10	11	12	13	14	15	16	17	18
n	10	11	12	13	14	15	16	17	18
u_n	195	210	225	240	255	270	285	300	315
\mathbf{S}_n	1275	1485	1710	1950	2205	2475	2760	3060	3375
Age	19	20	21	22	23	24	25	26	27

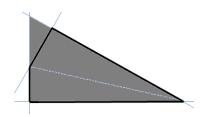
Question Number	Sche	eme	Notes		Marks	
10.(a)	l_1 : passes through	$(0, 2)$ and $(3, 7)$ l_2 : g	oes through (3, 7) and is pe	rpendicular to l_1		
	Gradient of l_1	is $\frac{7-2}{3-0} \left(=\frac{5}{3}\right)$	$m(l_1) = \frac{7-2}{3-0}$. Allow un-sir May be implied.	nplified.	B1	
	$m(l_2) = -1$	\div their $\frac{5}{3}$	Correct application of perpe	ndicular gradient	M1	
	y - 7 = "-	$\frac{3}{5}$ "(x - 3)	M1: Uses $y - 7 = m(x - 3)$ gradient or uses $y = mx + c$	with (3, 7) and	M1A1ft	
	$y = "-\frac{3}{5}"x + c, \ 7 = "-$	$\frac{3}{5}$ "(3) + c \Rightarrow c = $\frac{44}{5}$	their changed gradient to fin A1ft: Correct ft equation for gradient (this is dependent	their perpendicular on both M marks)		
	3x + 5y -	-44 = 0	Any positive or negative int be seen in (a) and must inclu		A1	
			M1: Puts $y = 0$ and finds a v	value for x from their	[5]	
		4.4	equation			
(b)	When $y = 0$	$x = \frac{44}{3}$	A1: $x = \frac{44}{3} \left(\text{ or } 14\frac{2}{3} \text{ or } 14. \right)$	$\binom{1}{6}$ or exact	M1 A1	
(0)	Card	2 5 44 0	equivalent. $(y = 0 \text{ not needed})$			
	Condone $3x - 5y - 44 = 0$ only leading to the correct answer and condone coordinates written as (0, 44/3) but allow recovery in (c)					
	and condoire coordinates written as (0, 44/5) but anow recovery in (c)					
(c)	Comment of the second of the		APPROACH: of the triangles or one of the	·····		
	one rectangle. The cor formula used for a tra Note that the first thr	rect pair of 'base' and ' pezium. If Pythagoras is correct end ee marks apply to thei	height' must be used for a tria s required, then it must be use d coordinates. r calculated coordinates e.g.	ngle and the correct d correctly with the their $\frac{44}{3}$, $\frac{44}{5}$, $-\frac{6}{5}$	M1	
	etc. But the given coordinates must be correct e.g. (0, 2) and (3, 7).					
	A correct numerical expression for the area of one triangle or one trapezium for their coordinates .					
	numerical expressions f	or areas have been inco	tly for their chosen "way". Norrectly simplified before combined to the first method matching th	bining them, then this	dM1	
	Correct numerical expr	ression for the area of <i>O</i> this mark i.e. r	<i>RQP</i> . The expressions must no follow through.	be fully correct for	A1	
	Correct	exact area e.g. $54\frac{1}{3}, \frac{163}{3}$	$, \frac{326}{6}, 54.3$ or any exact equi	valent	A1	
	Shape	Vertices	Numerical Expression	Exact Area		
	Triangle	TRQ	$\frac{\frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)}{\frac{1}{2} \times \frac{6}{5} \times 2}$	$\frac{245}{6}$		
	Triangle	SPO	$\frac{1}{2} \times \frac{6}{5} \times 2$	$\frac{6}{5}$		
	Triangle	PWQ	$\frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	$\frac{51}{5}$		
	Triangle	PVQ	$\frac{1}{2} \times (7-2) \times 3$	$\frac{15}{2}$		

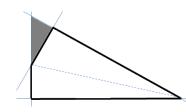

	-				
	Triangle	VWQ	$\frac{1}{2} \times \left(\frac{44}{5} - 7\right) \times 3$	$\frac{27}{10}$	
	Triangle	QUR	$\frac{1}{2} \times \left(\frac{44}{3} - 3\right) \times 7$	$\frac{245}{6}$	
	Triangle	PQR	$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$	$\frac{119}{3}$ $\frac{85}{3}$	
	Triangle	PNQ	$\frac{1}{2} \times \frac{34}{3} \times 5$	$\frac{85}{3}$	
	Triangle	OPQ	$\frac{1}{2} \times 2 \times 3$	3	
	Triangle	OQR	$\frac{\frac{1}{2} \times 2 \times 3}{\frac{1}{2} \times \frac{44}{3} \times 7}$ $\frac{\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}}{\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}}$	$\frac{154}{3}$	
	Triangle	OWR	$\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$	$\frac{968}{15}$	
	Triangle	SQR	$\frac{1}{2} \times \left(\frac{44}{3} + \frac{6}{5}\right) \times 7$	$\frac{833}{15}$	
	Triangle	OPR	$\frac{1}{2} \times \frac{44}{3} \times 2$	$\frac{\frac{44}{3}}{\frac{27}{2}}$	
	Trapezium	OPQT	$\frac{1}{2}(2+7) \times 3$	$\frac{27}{2}$	
	Trapezium	OPNR	$\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$	26	
	Trapezium	OVQR	$\frac{1}{2} \times \left(3 + \frac{44}{3}\right) \times 7$	$\frac{371}{6}$	
			MPLES		
(c)		VV	AY 1		
	$OPQT = \frac{1}{2}$	$(2+7) \times 3$	M1: Correct method for <i>OPQT</i> or <i>TRQ</i>		
	or $TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$		A1ft: $OPQT = \frac{1}{2}(2+7) \times 3$ $TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$	or	M1A1ft
	$\frac{1}{2}(2+7) \times 3 + \frac{1}{2}$	$\times 7 \times \left(\frac{44}{3} - 3\right)$	dM1: Correct numerical cor that have been calculated co A1: Fully Correct numerica area <i>ORQP</i>	rrectly	dM1A1
	54	$\frac{1}{3}$	Any exact equivalent e.g. $\frac{1}{2}$	$\frac{63}{3}, \frac{326}{6}, 54.3$	A1


W	VAY 2	
$PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$	M1: Correct method for <i>PQR</i> or <i>OPR</i>	
or	A1ft: $PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$ or	M1A1ft
$OPR = \frac{1}{2} \times \frac{44}{3} \times 2$	$OPR = \frac{1}{2} \times \frac{44}{3} \times 2$	
$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34} + \frac{1}{2} \times \frac{44}{3} \times 2$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

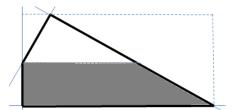


W	YAY 3	
$SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$ or $SPO = \frac{1}{2} \times \frac{6}{5} \times 2$	M1: Correct method for <i>SQR</i> or <i>SPO</i> A1ft: $SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$ or $SPO = \frac{1}{2} \times \frac{6}{5} \times 2$	M1A1ft
$\frac{1}{2} \times 7 \times \frac{238}{15} - \frac{1}{2} \times \frac{6}{5} \times 2$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

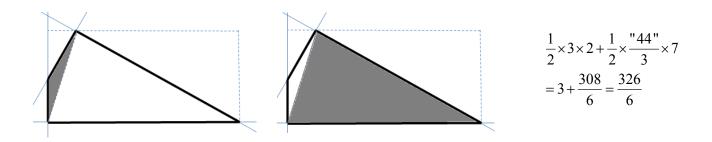

	WAY 4		
	$PVQ = \frac{1}{2} \times 5 \times 3$	M1: Correct method for <i>PVQ</i> or <i>QUR</i>	
	or	A1ft: $PVQ = \frac{1}{2} \times 5 \times 3$	M1A1ft
	$QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$	or $QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$	
$OVUR \ 7 \times \frac{44}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times 7 \times \frac{35}{3}$	01///102 44 1 5 2 1 7 35	dM1: Correct numerical combination of areas that have been calculated correctly	D (1 A 1
	A1: Fully Correct numerical expression for the area <i>ORQP</i>	- dM1A1	
	54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

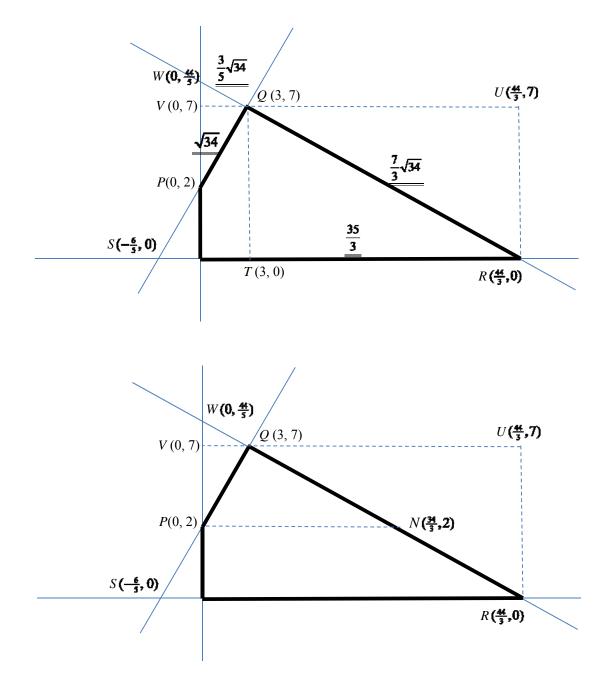


$$7 \times \frac{"44"}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times \frac{"35"}{3} \times 7$$
$$= \frac{308}{3} - \frac{15}{2} - \frac{245}{6} = \frac{326}{6}$$


WA	Y 5	
$OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$	M1: Correct method for OWR or PWQ	
$PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	A1ft: $OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or $PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	M1A1ft
$\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	$\frac{1}{2} \left(\frac{1}{5} - \frac{1}{2}\right)^{3}$ dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
$54\frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times \frac{"44"}{5} \times \frac{"44"}{3} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$$
$$= \frac{968}{15} - \frac{51}{5} = \frac{163}{3}$$


	WAY 6		
	1 (34 44)	M1: Correct method for OPNR or PNQ	
	$PNQ = \frac{1}{2} \times \frac{34}{2} \times 5$	A1ft: $OPNR = \frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$	M1A1ft
		or $PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$	
	$\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2 + \frac{1}{2} \times \frac{34}{3} \times 5$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for	dM1A1
	54 <u>1</u> 3	the area <i>ORQP</i> Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1


$$\frac{1}{2} \times \left(\frac{"34"}{3} + \frac{"44"}{3}\right) \times 2 + \frac{1}{2} \times \frac{"34"}{3} \times 5$$
$$= \frac{156}{6} + \frac{170}{6} = \frac{326}{6}$$

	WAY 7			
		M1: Correct method for OPQ or OQR		
	$OPQ = \frac{1}{2} \times 3 \times 2$ or $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$	A1ft: $OPQ = \frac{1}{2} \times 3 \times 2$	M1A1ft	
		or $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$		
	$\frac{1}{2} \times 3 \times 2 + \frac{1}{2} \times \frac{44}{3} \times 7$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1	
	54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1	

	WA	Y 8	
	2 0 0 7 2 0	M1: Uses the vertices of the quadrilateral to form a determinant $\begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$	M1A1ft
		A1ft: $\frac{1}{2}$ 0 $\frac{44}{3}$ 3 0 0 0 0 7 2 0	
	$\frac{1}{2}\left(\frac{44}{3}\times7+3\times2\right)$	dM1: Fully correct determinant method with no errors	dM1A1
		A1: Fully Correct numerical expression for the area <i>ORQP</i>	dM1A1
	$54\frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

There will be other ways but the same approach to marking should be applied.

Question Number	Scheme		Marks
11. (a)	$y = 2x^3 + kx^2$	$x^2 + 5x + 6$	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x^2 + 2kx + 5$	M1: $x^n \rightarrow x^{n-1}$ for one of the terms including 6 \rightarrow 0 A1: Correct derivative	M1 A1
			[2]
(b)	Gradient of given line is $\frac{17}{2}$	Uses or states $\frac{17}{2}$ or equivalent e.g. 8.5. Must be stated or used in (b) and not just seen as part of $y = \frac{17}{2}x + \frac{1}{2}$.	B1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=-2} = 6\left(-2\right)^2 + 2k\left(-2\right) + 5$	Substitutes $x = -2$ into their derivative (not the curve)	M1
	$"24 - 4k + 5" = "\frac{17}{2}" \Longrightarrow k = \frac{41}{8}$	dM1: Puts their expression = their $\frac{17}{2}$ (Allow BOD for 17 or -17 but not the normal gradient) and solves to obtain a value for <i>k</i> . Dependent on the previous method mark . A1: $\frac{41}{8}$ or $5\frac{1}{8}$ or 5.125	dM1 A1
	<u>Note:</u>		
	$6x^2 + 2kx + 5 = \frac{17}{2}x + \frac{1}{2}$ scores no marks on its own but may score the first M mark if they substitute $x = -2$ into the lhs. If they rearrange this equation and then substitute $x = -2$, this scores		
	no marks.		
(c)	M1: Substitutes $x = -2$ and their numerical k		[4]
	$y = -16 + 4k - 10 + 6 = 4"k" - 20 = \frac{1}{2}$	into $y = \dots$ A1: $y = \frac{1}{2}$	M1 A1
	Allow the marks for part (c) to be scored in part (b).		
(d)	$y - "\frac{1}{2}" = "\frac{17}{2}" (x - 2) \Longrightarrow -17x + 2y - 35 = 0$ or $y = "\frac{17}{2}" x + c \Longrightarrow c = \Longrightarrow -17x + 2y - 35 = 0$ or	M1: Correct attempt at linear equation with their 8.5 gradient (not the normal gradient) using $x = -2$ and their $\frac{1}{2}$ A1: cao (allow any integer multiple)	[2] • M1 A1
	$2y - 17x = 1 + 34 \Longrightarrow -17x + 2y - 35 = 0$	111. eao (anow any meger munipic)	
			[2] 10 marks
L			10 mai Kš