Paper Reference(s)

6663/01 Edexcel GCE

Core Mathematics C1

Advanced Subsidiary

Friday 13 January 2012 - Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)
Items included with question papers Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C1), the paper reference (6663), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
The marks for the parts of questions are shown in round brackets, e.g. (2).
There are 10 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. Given that $y=x^{4}+6 x^{\frac{1}{2}}$, find in their simplest form
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$.
2. (a) Simplify

$$
\sqrt{32}+\sqrt{18}
$$

giving your answer in the form $a \sqrt{ } 2$, where a is an integer.
(b) Simplify

$$
\frac{\sqrt{ } 32+\sqrt{ } 18}{3+\sqrt{ } 2}
$$

giving your answer in the form $b \sqrt{ } 2+c$, where b and c are integers.
3. Find the set of values of x for which
(a) $4 x-5>15-x$,
(b) $x(x-4)>12$.
4. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{aligned}
& x_{1}=1, \\
& x_{n+1}=a x_{n}+5, \quad n \geq 1,
\end{aligned}
$$

where a is a constant.
(a) Write down an expression for x_{2} in terms of a.
(b) Show that $x_{3}=a^{2}+5 a+5$.

Given that $x_{3}=41$
(c) find the possible values of a.
5. The curve C has equation $y=x(5-x)$ and the line L has equation $2 y=5 x+4$.
(a) Use algebra to show that C and L do not intersect.
(b) Sketch C and L on the same diagram, showing the coordinates of the points at which C and L meet the axes.
6.

Figure 1
The line l_{1} has equation $2 x-3 y+12=0$.
(a) Find the gradient of l_{1}.

The line l_{1} crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1 .
The line l_{2} is perpendicular to l_{1} and passes through B.
(b) Find an equation of l_{2}.

The line l_{2} crosses the x-axis at the point C.
(c) Find the area of triangle $A B C$.
7. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(2,10)$. Given that

$$
f^{\prime}(x)=3 x^{2}-3 x+5,
$$

find the value of $f(1)$.
8. The curve C_{1} has equation

$$
y=x^{2}(x+2) .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Sketch C_{1}, showing the coordinates of the points where C_{1} meets the x-axis.
(c) Find the gradient of C_{1} at each point where C_{1} meets the x-axis.
(2)

The curve C_{2} has equation

$$
y=(x-k)^{2}(x-k+2)
$$

where k is a constant and $k>2$.
(d) Sketch C_{2}, showing the coordinates of the points where C_{2} meets the x and y axes.
9. A company offers two salary schemes for a 10 -year period, Year 1 to Year 10 inclusive.

Scheme 1: Salary in Year 1 is $£ P$.
Salary increases by $\mathfrak{f}(2 T)$ each year, forming an arithmetic sequence.
Scheme 2: Salary in Year 1 is $\mathfrak{£}(P+1800)$.
Salary increases by $£ T$ each year, forming an arithmetic sequence.
(a) Show that the total earned under Salary Scheme 1 for the 10-year period is

$$
\begin{equation*}
£(10 P+90 T) . \tag{2}
\end{equation*}
$$

For the 10 -year period, the total earned is the same for both salary schemes.
(b) Find the value of T.

For this value of T, the salary in Year 10 under Salary Scheme 2 is $£ 29850$.
(c) Find the value of P.
10.

Figure 2
Figure 2 shows a sketch of the curve C with equation

$$
y=2-\frac{1}{x}, \quad x \neq 0 .
$$

The curve crosses the x-axis at the point A.
(a) Find the coordinates of A.
(b) Show that the equation of the normal to C at A can be written as

$$
\begin{equation*}
2 x+8 y-1=0 . \tag{6}
\end{equation*}
$$

The normal to C at A meets C again at the point B, as shown in Figure 2 .
(c) Find the coordinates of B.

January 2012

C1 6663

Mark Scheme

Question	Scheme ${ }^{\text {a }}$ Marks
1. (a)	$4 x^{3}+3 x^{-\frac{1}{2}}$ M1A1A1
(b)	$\begin{array}{\|l\|l} \frac{x^{5}}{5}+4 x^{\frac{3}{2}}+C & \begin{array}{l} \text { M1A1A1 } \\ \hline \end{array} \\ \hline \text { 6 marks } \\ \hline \end{array}$
	Notes
(a)	M1 for $x^{n} \rightarrow x^{n-1}$ i.e. x^{3} or $x^{-\frac{1}{2}}$ seen $1^{\text {st }} \mathrm{A} 1$ for $4 x^{3}$ or $6 \times \frac{1}{2} \times x^{-\frac{1}{2}}$ (o.e.) (ignore any $+c$ for this mark) $2^{\text {nd }} \mathrm{A} 1$ for simplified terms i.e. both $4 x^{3}$ and $3 x^{-\frac{1}{2}}$ or $\frac{3}{\sqrt{x}}$ and no $+c\left[\frac{3}{1} x^{-\frac{1}{2}}\right.$ is A0 $]$ Apply ISW here and award marks when first seen M1 for $x^{n} \rightarrow x^{n+1}$ applied to y only so x^{5} or $x^{\frac{3}{2}}$ seen. Do not award for integrating their answer to part (a) $1^{\text {st }} \mathrm{A} 1$ for $\frac{x^{5}}{5}$ or $\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ (or better). Allow $1 / 5 x^{5}$ here but not for $2^{\text {nd }} \mathrm{A} 1$ $2^{\text {nd }}$ A1 for fully correct and simplified answer with $+C$. Allow $(1 / 5) x^{5}$ If $+C$ appears earlier but not on a line where $2^{\text {nd }} \mathrm{A} 1$ could be scored then A 0

Question	Scheme ${ }^{\text {a }}$ Marks
3. (a) (b)	
	Notes
(a) (b)	

Question	Scheme	Marks
6. (a)	$(m=) \frac{2}{3} \quad$ (or exact equivalent)	B1 (1)
(b)	$B:(0,4) \quad$ [award when first seen - may be in (c)]	B1
	Gradient: $\frac{-1}{m}=-\frac{3}{2}$	M1
	$y-4=-\frac{3 x}{2} \quad$ or equiv. e.g. $\left(y=-\frac{3 x}{2}+4, \quad 3 x+2 y-8=0\right)$	A1 (3)
(c)	$A:(-6,0) \quad$ [award when first seen - may be in (b)]	B1
	$C: \frac{3 x}{2}=4 \quad \Rightarrow \quad x=\frac{8}{3} \quad$ [award when first seen - may be in (b)]	B1ft
	Area: Using $\frac{1}{2}\left(x_{C}-x_{A}\right) y_{B}$	M1
	$=\frac{1}{2}\left(\frac{8}{3}+6\right) 4=\frac{52}{3}\left(=17 \frac{1}{3}\right)$	A1 cso (4)
ALT	$B C=\frac{4}{6} \sqrt{52}$ (from similar triangles) (or possibly using C)	$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$
	Area: Using $\frac{1}{2}(A B \times B C) \quad$ N.B. $A B=\sqrt{6^{2}+4^{2}}=\sqrt{52}$	M1
	$=\frac{1}{2} \times \sqrt{52} \times\left(\frac{2}{3} \sqrt{52}\right)=\frac{52}{3}\left(=17 \frac{1}{3}\right)$	
		8 marks
	Notes	
(a)	B1 for $\frac{2}{3}$ seen. Do not award for $\frac{2}{3} x$ and must be in part (a)	
(b)	B1 for coordinates of B. Accept 4 marked on y-axis (clearly labelled) M1 for use of perpendicular gradient rule. Follow through their value for m A1 for a correct equation (any form, need not be simplified). Answer only $3 / 3$	
(c)	$1^{\text {st }}$ B1 for the coordinates of A (clearly labelled). Accept -6 marked on x-axis $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ for the coordinates of C (clearly labelled) or $A C=\frac{26}{3}$. Accept $x=\frac{8}{3}$ marked on x-axis. Follow through from l_{2} if >0	
	M1 for an expression for the area of the triangle (all lengths >0). Ft their 4, - 6 and $\frac{8}{3}$	
	A1 cso for $\frac{52}{3}$ or exact equivalent seen but must be a single fraction or $17 \frac{1}{3}$ or $17 \frac{2}{6}$ etc $17 \frac{1}{3}$ on its own can only score full marks if A, B and C are all correct.	
ALT	$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ If they use this approach award this mark for C (if seen) or $B C$	
Use of Det	$2^{\text {nd }}$ M1 must get as far as: $\frac{1}{2}\left\|x_{A} \times y_{B}-x_{C} \times y_{B}\right\|$	

Question	Scheme	Marks
7.	$\begin{aligned} & {[\mathrm{f}(x)=] \frac{3 x^{3}}{3}-\frac{3 x^{2}}{2}+5 x[+c] \quad \text { or }\left\{x^{3}-\frac{3}{2} x^{2}+5 x(+c)\right\}} \\ & 10=8-6+10+c \\ & \quad c=-2 \\ & \mathrm{f}(1)=1-\frac{3}{2}+5 \quad-2 "=\frac{5}{\underline{2}} \quad \text { (o.e.) } \end{aligned}$	M1A1 M1 A1 A1ft (5) 5 marks
	Notes	
	```\(1^{\text {st }}\) M1 for attempt to integrate \(x^{n} \rightarrow x^{n+1}\) \(1^{\text {st }} \mathrm{A} 1\) all correct, possibly unsimplified. Ignore \(+c\) here. \(2^{\text {nd }}\) M1 for using \(x=2\) and \(\mathrm{f}(2)=10\) to form a linear equation in \(c\). Allow sign errors. They should be substituting into a changed expression \(2^{\text {nd }} \mathrm{A} 1 \quad\) for \(c=-2\) \(3^{\text {rd }} \mathrm{A} 1 \mathrm{ft}\) for \(\frac{9}{2}+c\) Follow through their numerical \(c(\neq 0)\) This mark is dependent on \(1^{\text {st }} \mathrm{M} 1\) and \(1^{\text {st }} \mathrm{A} 1\) only.```	




\begin{tabular}{|c|c|}
\hline Question \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 10. (a) \& \begin{tabular}{l}
\(\left(\frac{1}{2}, 0\right)\) \\
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-2}\) \\
At \(x=\frac{1}{2}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\frac{1}{2}\right)^{-2}=4 \quad(=m)\)
\[
\text { Gradient of normal }=-\frac{1}{m} \quad\left(=-\frac{1}{4}\right)
\] \\
Equation of normal: \(y-0=-\frac{1}{4}\left(x-\frac{1}{2}\right)\)
\[
\begin{equation*}
2 x+8 y-1=0 \tag{*}
\end{equation*}
\]
\end{tabular} \\
\hline \& Notes \\
\hline (a)
(b)

(c) \& | B1 accept $x=\frac{1}{2}$ if evidence that $y=0$ has been used. Can be written on graph. Use ISW |
| :--- |
| $1^{\text {st }}$ M1 for $k x^{-2}$ even if the ' 2 ' is not differentiated to zero. |
| If no evidence of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ |
| $1^{\text {st }} \mathrm{A} 1$ for $x^{-2}$ (o.e.) only |
| $2^{\text {nd }} \mathrm{A} 1 \quad$ for using $x=0.5$ to get $m=4$ (correctly) (or $m=1 / 0.25$ ) |
| To score final A1cso must see at least one intermediate equation for the line after $m=4$ $2^{\text {nd }}$ M1 for using the perpendicular gradient rule on their $m$ coming from their $\frac{d y}{d x}$ |
| Their $m$ must be a value not a letter. |
| $3^{\text {rd }}$ M1 for using a changed gradient (based on $y^{\prime}$ ) and their $A$ to find equation of line |
| $3^{\text {rd }}$ A1cso for reaching printed answer with no incorrect working seen. |
| Accept $2 x+8 y=1$ or equivalent equations with $\pm 2 x$ and $\pm 8 y$ |
| Trial and improvement requires sight of first equation. |
| $1^{\text {st }}$ M1 for attempt to form a suitable equation in one variable. Do not penalise poor use of brackets etc. |
| $2^{\text {nd }}$ M1 for simplifying their equation to a 3TQ and attempting to solve. May be $\Rightarrow \text { by } x=-8$ |
| $1^{\text {st }}$ A1 for $x=-8$ (ignore a second value). If found $y$ first allow ft for $x$ if $x<0$ |
| $2^{\text {nd }}$ A1ft for $y=\frac{17}{8}$ Follow through their $x$ value in line or curve provided answer is $>0$ |
| This second A1 is dependent on both M marks | <br>

\hline
\end{tabular}

