Edexcel GCE

Core Mathematics C1

Advanced Subsidiary

Wednesday 18 May 2011 - Morning

Time: 1 hour 30 minutes

Materials required for examination
Items included with question papers
Mathematical Formulae (Pink) Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C1), the paper reference (6663), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
There are 10 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. Find the value of
(a) $25^{\frac{1}{2}}$,
(b) $25^{-\frac{3}{2}}$.
(2)
2. Given that $y=2 x^{5}+7+\frac{1}{x^{3}}, x \neq 0$, find, in their simplest form,
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$.
3. The points P and Q have coordinates $(-1,6)$ and $(9,0)$ respectively.

The line l is perpendicular to $P Q$ and passes through the mid-point of $P Q$.
Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
4. Solve the simultaneous equations

$$
\begin{align*}
x+y & =2 \\
4 y^{2}-x^{2} & =11 \tag{7}
\end{align*}
$$

5. A sequence $a_{1}, a_{2}, a_{3}, \ldots$, is defined by

$$
\begin{aligned}
a_{1} & =k, \\
a_{n+1} & =5 a_{n}+3, \quad n \geq 1,
\end{aligned}
$$

where k is a positive integer.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=25 k+18$.
(c) (i) Find $\sum_{r=1}^{4} a_{r}$ in terms of k, in its simplest form.
(ii) Show that $\sum_{r=1}^{4} a_{r}$ is divisible by 6 .
6. Given that $\frac{6 x+3 x^{\frac{5}{2}}}{\sqrt{x}}$ can be written in the form $6 x^{p}+3 x q$,
(a) write down the value of p and the value of q.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+3 x^{\frac{5}{2}}}{\sqrt{ } x}$ and that $y=90$ when $x=4$,
(b) find y in terms of x, simplifying the coefficient of each term.
7.

$$
\mathrm{f}(x)=x^{2}+(k+3) x+k,
$$

where k is a real constant.
(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k.
(b) Show that the discriminant of $\mathrm{f}(x)$ can be expressed in the form $(k+a)^{2}+b$, where a and b are integers to be found.

(2)

(c) Show that, for all values of k, the equation $\mathrm{f}(x)=0$ has real roots.
8.

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$.
The curve C passes through the origin and through (6,0).
The curve C has a minimum at the point $(3,-1)$.
On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(2 x)$,
(b) $y=-\mathrm{f}(x)$,
(c) $y=\mathrm{f}(x+p)$, where p is a constant and $0<p<3$.

On each diagram show the coordinates of any points where the curve intersects the x-axis and of any minimum or maximum points.
9. (a) Calculate the sum of all the even numbers from 2 to 100 inclusive,

$$
\begin{equation*}
2+4+6+\ldots \ldots+100 . \tag{3}
\end{equation*}
$$

(b) In the arithmetic series

$$
k+2 k+3 k+\ldots \ldots .+100,
$$

k is a positive integer and k is a factor of 100 .
(i) Find, in terms of k, an expression for the number of terms in this series.
(ii) Show that the sum of this series is

$$
50+\frac{5000}{k} .
$$

(4)
(c) Find, in terms of k, the 50th term of the arithmetic sequence

$$
(2 k+1), \quad(4 k+4), \quad(6 k+7), \ldots,
$$

giving your answer in its simplest form.

(2)

10. The curve C has equation

$$
y=(x+1)(x+3)^{2}
$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15$.

The point A, with x-coordinate -5 , lies on C.
(c) Find the equation of the tangent to C at A, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point B also lies on C. The tangents to C at A and B are parallel.
(d) Find the x-coordinate of B.

END

J une 2011
 Core Mathematics C1 6663
 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$5 \quad$ (or ± 5)	B1 (1)
(b)	$25^{-\frac{3}{2}}=\frac{1}{25^{\frac{3}{2}}}$ or $25^{\frac{3}{2}}=125$ or better $\frac{1}{125} \text { or } 0.008 \quad\left(\text { or } \pm \frac{1}{125}\right)$	M1 A1 (2) 3
	Notes (a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}}=125$ Accept $\frac{1}{5^{3}}, \frac{1}{\sqrt{15625}}, \frac{1}{25 \times 5}, \frac{1}{25 \sqrt{25}}, \frac{1}{\sqrt{25^{3}}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$	i.e. M1 A1

advancing learning, changing lives

Question Number	Scheme	Marks
2. (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{4}-3 x^{-4} \quad \text { or } \quad 10 x^{4}-\frac{3}{x^{4}}$	M1 A1 A1 (3)
(b)	$\left(\int=\right) \frac{2 x^{6}}{6}+7 x+\frac{x^{-2}}{-2}=\frac{x^{6}}{3}+7 x-\frac{x^{-2}}{2}$	M1 A1 A1 B1 (4) 7
	Notes (a) M1: Attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 3 terms) i.e. $a x^{4}$ or $a x^{-4}$, where a is any non-zero constant or the 7 differentiated to give 0 is sufficient evidence for M1 $1^{\text {st }} \mathrm{A} 1$: One correct (non-zero) term, possibly unsimplified. $2^{\text {nd }}$ A1: Fully correct simplified answer. (b) M1: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x$ or $a x^{-2}$, where a is any non-zero constant). $1^{\text {st }} \mathrm{A} 1$: Two correct terms, possibly unsimplified. $2^{\text {nd }} \mathrm{A}$: All three terms correct and simplified. Allow correct equivalents to printed answer, e.g. $\frac{x^{6}}{3}+7 x-\frac{1}{2 x^{2}}$ or $\frac{1}{3}$ Allow $\frac{1 x^{6}}{3}$ or $7 x^{1}$ B1: $+C$ appearing at any stage in part (b) (independent of previous work)	$+7 x-\frac{1}{2} x^{-2}$

advancing learning, changing lives

Question Number	Scheme \quad Marks
3.	Mid-point of $P Q$ is $(4,3)$ B 1 $P Q: m=\frac{0-6}{9-(-1)},\left(=-\frac{3}{5}\right)$ B 1 Gradient perpendicular to $P Q=-\frac{1}{m} \quad\left(=\frac{5}{3}\right)$ $y-3=\frac{5}{3}(x-4)$ M 1 $5 x-3 y-11=0$ or $3 y-5 x+11=0$ or multiples e.g. $10 x-6 y-22=0$ M1
	Notes B1: correct midpoint. B1: correct numerical expression for gradient - need not be simplified $1^{\text {st }} \mathrm{M}$: Negative reciprocal of their numerical value for m $2^{\text {nd }} \mathrm{M}$: Equation of a line through their $(4,3)$ with any gradient except 0 or ∞. If the 4 and 3 are the wrong way round the $2^{\text {nd }} \mathrm{M}$ mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(4,3)$ is substituted into $y=m x+c$ to find c, the $2^{\text {nd }} M$ mark is for attempting this. A1: Requires integer form with an = zero (see examples above)

advancing learning, changing lives

Question Number	Scheme	Marks
4.	Either Or $y^{2}=4-4 x+x^{2}$ $x^{2}=4-4 y+y^{2}$ $4\left(4-4 x+x^{2}\right)-x^{2}=11$ $4 y^{2}-\left(4-4 y+y^{2}\right)=11$ or $4(2-x)^{2}-x^{2}=11$ or $4 y^{2}-(2-y)^{2}=11$ $3 x^{2}-16 x+5=0$ $(3 x-1)(x-5)=0, \quad x=$ $x=\frac{1}{3} \quad x=5$ Correct 3 terms $(3 y-5)(y+3)=0, \quad y=\ldots$ $y=\frac{5}{3} \quad y=-3$ $x=\frac{5}{3} \quad y=-3$ $x=5$	M1 M1 A1 M1 A1 M1 A1
	Notes $1^{\text {st }} \mathrm{M}$: Squaring to give 3 or 4 terms (need a middle term) $2^{\text {nd }} \mathrm{M}$: Substitute to give quadratic in one variable (may have just two terms) $3^{\text {rd }} \mathrm{M}$: Attempt to solve a $\mathbf{3}$ term quadratic. $4^{\text {th }} \mathrm{M}$: Attempt to find at least one y value (or x value). (The second variable) This will be by substitution or by starting again. If y solutions are given as x values, or vice-versa, penalise accuracy, so that it to score M1 M1A1 M1 A0 M1 A0. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=5, y=-3$): M0 M0 A0 M1 A0 M1 A No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A Both correct solution pairs found, and demonstrated: Full marks are possible (review)	is possible A0 A1 (send to

advancing learning, changing lives

Question Number	Scheme	Marks
5. (a)	$\left(a_{2}=\right) 5 k+3$	B1 (1)
(b)	$\begin{align*} \left(a_{3}\right. & =) 5(5 k+3)+3 \\ & =25 k+18 \tag{*} \end{align*}$	M1 A1 cso (2)
(c) (i) (ii)	$\begin{aligned} & a_{4}=5(25 k+18)+3 \quad(=125 k+93) \\ & \begin{aligned} \sum_{r=1}^{4} a_{r} & =k+(5 k+3)+(25 k+18)+(125 k+93) \\ & =156 k+114 \\ & =6(26 k+19) \quad \text { (or explain each term is divisible by } 6) \end{aligned} \end{aligned}$	M1 (4)
	Notes (a) $5 k+3$ must be seen in (a) to gain the mark (b) $1^{\text {st }} \mathrm{M}$: Substitutes their a_{2} into $5 a_{2}+3$ - note the answer is given so w be seen. (c) $1^{\text {st }}$ M1: Substitutes their a_{3} into $5 a_{3}+3$ or uses $125 k+93$ $2^{\text {nd }} \mathrm{M} 1$: for their sum $k+a_{2}+a_{3}+a_{4}$ - must see evidence of four ter signs and must not be sum of AP $1^{\text {st }} \mathrm{A}$: All correct so far $2^{\text {nd }}$ A1 ft: Limited $\mathrm{ft}-$ previous answer must be divisible by 6 (eg $156 k+42$). This is dependent on second M mark in (c) Allow $\frac{156 k+114}{6}=26 k+19$ without explanation. No conclusion is needed.	orking must ms with plus

advancing learning, changing lives

Question Number	Scheme	Marks
6. (a)	$p=\frac{1}{2}, q=2 \quad$ or $\quad 6 x^{\frac{1}{2}}, 3 x^{2}$	$\mathrm{B} 1, \mathrm{~B} 1$ (2)
(b)	$\begin{aligned} & \frac{6 x^{\frac{3}{2}}}{(3 / 2)}+\frac{3 x^{3}}{3} \quad\left(=4 x^{\frac{3}{2}}+x^{3}\right) \\ & x=4, y=90: 32+64+C=90 \Rightarrow C=-6 \\ & y=4 x^{\frac{3}{2}}+x^{3}+\text { "their }-6 " \end{aligned}$	M1 A1ft M1 A1 A1 (5)
	Notes	
	(a) Accept any equivalent answers, e.g. $p=0.5, q=4 / 2$ (b) $1^{\text {st }} \mathrm{M}$: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (for either term) $1^{\text {st }} \mathrm{A}$: ft their p and q, but terms need not be simplified ($+C$ not required for this mark) $2^{\text {nd }} \mathrm{M}$: Using $x=4$ and $y=90$ to form an equation in C. $2^{\text {nd }}$ A: cao $3^{\text {rd }} \mathrm{A}$: answer as shown with simplified correct coefficients and powers - but follow through their value for C If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Numerator and denominator integrated separately: First M mark cannot be awarded so only mark available is second M mark. So 1 out of 5 marks.	

advancing learning, changing lives

Question Number	Scheme	Marks
7. (a)	Discriminant: $b^{2}-4 a c=(k+3)^{2}-4 k$ or equivalent	M1 A1 (2)
(b)	$(k+3)^{2}-4 k=k^{2}+2 k+9=(k+1)^{2}+8$	M1 A1 (2)
(c)	For real roots, $b^{2}-4 a c \geq 0$ or $b^{2}-4 a c>0$ or $(k+1)^{2}+8>0$ $(k+1)^{2} \geq 0$ for all k, so $b^{2}-4 a c>0$, so roots are real for all k equiv.)	M1 A1 cso (2) 6
	Notes (a) M1: attempt to find discriminant - substitution is required If formula $b^{2}-4 a c$ is seen at least 2 of a, b and c must be correct If formula $b^{2}-4 a c$ is not seen all 3 of a, b and c must be correct Use of $b^{2}+4 a c$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^{2}+8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^{2} \geq 0$ and conclusion. We will allow $(k+1)^{2}>0$ (or word positive) also allow $b^{2}-4 a c \geq 0$ an	and conclusion.

advancing learning, changing lives

Question Number	Scheme	Marks
8. (a)	Shape through $(0,0)$ $(3,0)$ $(1.5,-1)$	B1 B1 B1 (3)
(b)	 Shape \square $(0,0)$ and $(6,0)$ $(3,1)$	B1 B1 B1 (3)
(c)	Shape \bigcup, not through $(0,0)$Minimum in $4^{\text {th }}$ quadrant$(-p, 0)$ and $(6-p, 0)$ $(3-p,-1)$	M1 A1 B1 B1 (4)
Notes		
	(a) B1: U shaped parabola through origin B1: $(3,0)$ stated or 3 labelled on x axis B1: $(1.5,-1)$ or equivalent e.g. $(3 / 2,-1)$ (b) B1: Cap shaped parabola in any position B1: through origin (may not be labelled) and $(6,0)$ stated or 6 labelled on x-axis B1: $(3,1)$ shown (c) M1: U shaped parabola not through origin A1: Minimum in $4^{\text {th }}$ quadrant (depends on M mark having been given) B1: Coordinates stated or shown on x axis B1: Coordinates stated Note: If values are taken for p, then it is possible to give M1A1B0B0 even if there are several attempts. (In this case all minima should be in fourth quadrant)	

advancing learning, changing lives

advancing learning, changing lives

Question Number	Scheme	Marks
10. (a)	 Shape (cubic in this orientation) Touching x-axis at $\mathbf{- 3}$ Crossing at $\mathbf{- 1}$ on x-axis Intersection at 9 on y-axis	B1 B1 B1 B1 (4)
(b)	$y=(x+1)\left(x^{2}+6 x+9\right)=x^{3}+7 x^{2}+15 x+9$ or equiv. (possibly unsimplified) Differentiates their polynomial correctly - may be unsimplified $\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15 \tag{*} \end{equation*}$	B1 M1 A1 cso (3)
(c)	$\begin{aligned} & \text { At } x=-5: \frac{\mathrm{d} y}{\mathrm{~d} x}=75-70+15=20 \\ & \begin{aligned} & \text { At } x=-5: y=-16 \\ & y-("-16 ")=" 20 "(x-(-5)) \\ & \text { or } y=" 20 x "+c \text { with }(-5,-" 16 ") \end{aligned} \end{aligned}$ used to find c $y=20 x+84$	B1 B1 M1 A1 (4)
(d)	$\begin{aligned} & \text { Parallel: } 3 x^{2}+14 x+15=" 20 " \\ & \begin{array}{ll} (3 x-1)(x+5)=0 \quad x & =\ldots \\ x=\frac{1}{3} & \end{array} \\ & \end{aligned}$	M1 M1 A1 (3) 14
	Notes (a) Crossing at -3 is B 0 . Touching at -1 is B 0 (b) M: This needs to be correct differentiation here A1: Fully correct simplified answer. (c) M: If the -5 and "- 16 " are the wrong way round or - omitted the M mark can still be given if a correct formula is seen, (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) otherwise M0. m should be numerical and not 0 or infinity and should not have involved negative reciprocal. (d) $1^{\text {st }} \mathrm{M}$: Putting the derivative expression equal to their value for gradient $2^{\text {nd }} \mathrm{M}$: Attempt to solve quadratic (see notes) This may be implied by correct answer.	

