Paper Reference(s)

6683/01 Edexcel GCE

Statistics S1

Advanced/Advanced Subsidiary

Tuesday 10 June 2014 – Morning

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 8 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. A random sample of 35 homeowners was taken from each of the villages Greenslax and Penville and their ages were recorded. The results are summarised in the back-to-back stem and leaf diagram below.

Totals				Gre	eens	lax]	Pen	ville	•				Totals
(2)							8	7	2	5	5	6	7	8	8	9					(7)
(3)						9	8	7	3	1	1	1	2	3	4	4	5	6	7	9	(11)
(4)					4	4	4	0	4	0	1	2	4	7							(5)
(5)				6	6	5	2	2	5	0	0	5	5	5							(5)
(7)		8	6	5	4	2	1	1	6	2	5	6	6								(4)
(8)	8	6	6	6	4	3	1	1	7	0	5										(2)
(5)				9	8	4	3	2	8												(0)
(1)								4	9	9											(1)

Key: 7 | 3 | 1 means 37 years for Greenslax and 31 years for Penville

Some of the quartiles for these two distributions are given in the table below.

	Greenslax	Penville
Lower quartile, Q_1	а	31
Median, Q_2	64	39
Upper quartile, Q_3	b	55

(*a*) Find the value of *a* and the value of *b*.

An outlier is a value that falls either

more than $1.5 \times (Q3 - Q1)$ above Q3

or more than $1.5 \times (Q3 - Q1)$ below Q1

(*b*) On the graph paper on the next page draw a box plot to represent the data from Penville. Show clearly any outliers.

(4)

(2)

(c) State the skewness of each distribution. Justify your answers.

(3)

Question 1(*b*) graph paper

2. The mark, *x*, scored by each student who sat a statistics examination is coded using

$$y = 1.4x - 20$$

The coded marks have mean 60.8 and standard deviation 6.60.

Find the mean and the standard deviation of x.

(4)

3. The table shows data on the number of visitors to the UK in a month, v (1000s), and the amount of money they spent, m (£ millions), for each of 8 months.

Number of visitors v (1000s)	2450	2480	2540	2420	2350	2290	2400	2460
Amount of money spent m (£ millions)	1370	1350	1400	1330	1270	1210	1330	1350

You may use

$S_{vv} = 42587.5$	$S_{vm} = 31512.5$	$S_{mm} = 25187.5$	$\Sigma v = 19390$	$\Sigma m = 10610$

<i>(a)</i>	Find the product moment correlation coefficient between <i>m</i> and <i>v</i> .	
		(2)
<i>(b)</i>	Give a reason to support fitting a regression model of the form $m = a + bv$ to these data	•
		(1)
(<i>c</i>)	Find the value of b correct to 3 decimal places.	
		(2)
(d)	Find the equation of the regression line of <i>m</i> on <i>v</i> .	
		(2)
(<i>e</i>)	Interpret your value of <i>b</i> .	
		(2)
(f)	Use your answer to part (d) to estimate the amount of money spent when the number visitors to the UK in a month is 2 500 000.	of
		(2)
(<i>g</i>)	Comment on the reliability of your estimate in part (<i>f</i>). Give a reason for your answer.	
		(2)

4.	In a factory, three machines, <i>J</i> , <i>K</i> and <i>L</i> , are used to make biscuits.	
	Machine J makes 25% of the biscuits.	
	Machine <i>K</i> makes 45% of the biscuits.	
	The rest of the biscuits are made by machine <i>L</i> .	
	It is known that 2% of the biscuits made by machine J are broken, 3% of the biscuits made by machine K are broken and 5% of the biscuits made by machine L are broken.	
	(<i>a</i>) Draw a tree diagram to illustrate all the possible outcomes and associated probabilities. (2)	
	A biscuit is selected at random.	
	(b) Calculate the probability that the biscuit is made by machine J and is not broken. (2)	
	(c) Calculate the probability that the biscuit is broken. (2)	
	(d) Given that the biscuit is broken, find the probability that it was not made by machine K . (3)	
		-

5. The discrete random variable *X* has the probability function

$$P(X = x) = \begin{cases} kx & x = 2, 4, 6\\ k(x-2) & x = 8\\ 0 & \text{otherwise} \end{cases}$$

where *k* is a constant.

(a) Show that
$$k = \frac{1}{18}$$
.

(b) Find the exact value of F(5).

(2)

- (1)
- (c) Find the exact value of E(X). (2)
- (d) Find the exact value of $E(X^2)$. (2)
- (e) Calculate Var(3 4X) giving your answer to 3 significant figures. (3)

Time (seconds)	Number of customers, f
0-30	2
30-60	10
60 - 70	17
70 - 80	25
80 - 100	25
100 - 150	6

6. The times, in seconds, spent in a queue at a supermarket by 85 randomly selected customers, are summarised in the table below.

A histogram was drawn to represent these data. The 30 - 60 group was represented by a bar of width 1.5 cm and height 1 cm.

- (a) Find the width and the height of the 70 80 group.
- (b) Use linear interpolation to estimate the median of this distribution.

(2)

(3)

Given that *x* denotes the midpoint of each group in the table and

$$\Sigma fx = 6460$$
 $\Sigma fx^2 = 529\ 400$

- (c) calculate an estimate for
 - (i) the mean,
 - (ii) the standard deviation,

for the above data.

One measure of skewness is given by

coefficient of skewness =
$$\frac{3(\text{mean} - \text{median})}{\text{standard deviation}}$$

(*d*) Evaluate this coefficient and comment on the skewness of these data.

(3)

(3)

- 7. The heights of adult females are normally distributed with mean 160 cm and standard deviation 8 cm.
 (a) Find the probability that a randomly selected adult female has a height greater than 170 cm.
 (3) Any adult female whose height is greater than 170 cm is defined as tall.
 An adult female is chosen at random. Given that she is tall,
 (b) find the probability that she has a height greater than 180 cm.
 (4) Half of tall adult females have a height greater than h cm.
 (c) Find the value of h.
- 8. For the events *A* and *B*,

$P(A' \cap B) = 0.22 \text{ and } P(A' \cap B') = 0.18$	
(a) Find $P(A)$.	(1)
(b) Find $P(A \cup B)$.	
	(1)
Given that $P(A B) = 0.6$,	
(c) find $P(A \cap B)$.	(3)
(<i>d</i>) Determine whether or not <i>A</i> and <i>B</i> are independent.	(5)

(a) Determine whether of not T and D are independent. (2)

TOTAL FOR PAPER: 75 MARKS

END

Question Number	Scheme	Marks
1. (a)	a = 44 These answers may be in or near the	B1
	b = 76 table	B1
		(2)
(b)	55+1.5(55-31)=91 [and $31-1.5(55-31)=-5$]	M1
	<u>Penville</u>	B1
		B1
		A1
	0 10 20 30 40 50 60 70 80 90 100 110 120	
	Years	(4)
(c)	Greenslax: $[Q_2 - Q_1 = 20, Q_3 - Q_2 = 12 \text{ or } (Q_2 - Q_1) > (Q_3 - Q_2)] \Rightarrow -ve(skew)$	B1
	Penville: $[Q_2 - Q_1 = 8, Q_3 - Q_2 = 16 \text{ or } (Q_3 - Q_2) > (Q_2 - Q_1)] \Rightarrow +ve (skew)$	B1
	Don't insist on seeing "skew" so just -ve and +ve will do. Treat "correlation" as ISW	
	Justification that is consistent	ddB1 (3)
		Total 9
	Notes	M1
	A fully correct box plot scores 4/4. If <u>not</u> fully correct apply scheme and need evidence fo If two box plots are seen ignore the one for Greenslax. If not on graph paper M1 max	
(b)	M1 for sight of $55+1.5(55-31)$ or 91 seen (possibly implied by RH whisker of box p	plot)
	May be implied by a fully correct box plot	
	1 st B1 box with whiskers (condone missing median)	
	2 nd B1 25, 31, 39, 55, RH whisker to end at 75 or 91. Two RH whiskers is B0 Accuracy must be to within 0.5 of a square so e.g. lower quartile at 30 or 32 is	OK
	A1 only one outlier plotted at 99. Allow cross to be vertically displaced If the RH whisker goes to 99 (2 nd B0) and A0 even if outlier is identified since we a horizontal "gap" between RH whisker and outlier.	ve require
(c)	$1^{\text{st}} B1$ Greenslax – ve (skew) We must be able to tell which is which but labels may	y be
	2 nd B1 Penville + ve (skew). implied by their <u>values</u> but not simply from $Q_3 - Q_2 >$ If there is just <u>one</u> , unlabelled comment assume Penv	
	3 rd ddB1 dependent on 1 st and 2 nd B marks being scored. Justification for <u>both</u> based on: quartiles, median relative to quartiles, or "tail"	
	If only values for $Q_3 - Q_2$ etc are <u>given</u> they should be correct ft for Greenslax and correct for	Penville
	If values for Greenslax imply +ve skew then 1 st B0 and 3 rd B0	

Question Number	Scheme	Marks
2	mean = $\frac{60.8 + 20}{1.4}$ <u>or</u> $60.8 = 1.4x - 20$ (o.e.)	M1
	= 57.7142 awrt 57.7	A1
	standard deviation = $\frac{6.60}{1.4}$ <u>or</u> $6.60 = 1.4x$	M1
	= 4.7142 awrt 4.71	A1
		(4)
		Total 4
	Notes	
	1 st M1 sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean 1 st A1 for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is 2/2	
	2 nd M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^2 = 1.4^2 x^2$ is M0 until we see them take a square root. 2 nd A1 for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is 2/2	

Question Number	Scheme	Mar	ks
3 (a)	$r = \frac{31512.5}{\sqrt{42587.5 \times 25187.5}} = 0.962$ awrt 0.962	M1 A	¹ (2)
(b)	<i>r</i> is close to 1 <u>or</u> a strong correlation . ["points are close to a straight line" isB0] [Just "positive" correlation is B0] [Use of "relationship" or "skew" not "correlation" is B0]	B1	(1)
(c)	$b = \frac{31512.5}{42587.5} = 0.739947 = 0.740 \text{ (3 dp)}$ 0.740 (only)	M1 A1cac	
(d)	$a = 1326.25 - (0.7399 \times 2423.75)$ [= - 467.2 or awrt - 467]	M1	(2)
	So $m = -467 + 0.74v$	A1	(2)
(e)	<i>b</i> is the <u>money (spent)</u> per <u>visitor</u> . (i.e. definition of a rate in words.)[ignore values] So each 1000 visitors generates an extra $\pounds 0.74$ million <u>or</u> each visitor spends $\pounds 740$ oe	B1 B1ft	(2)
(f)	$m = -467 + 0.74 \times 2500$ m = 1383 (£ million) awrt 1380	M1 A1	
(g)	As 2500 is within the range of the data set <u>or</u> it involves <u>interpolation</u> . The value of money spent is reliable	B1 dB1 Total	(2) (2) 13
	Notes		
(a)	M1 for a correct expression for <i>r</i> . Ans only of 0.96 or awrt 0.96 is M1A0 Ans only of 0.962 or awrt 0.962 is M1A1. Do not allow fractions for A1	1	
(b)	B1 for comment implying strong correlation. (e.g. big/high/clear etc) B0 if $ r > 1$		
(c)	M1 for a correct expression for b (may be implied by 0.74 or better in regression equ	ation)	
	A1 A1 for 0.740 only in (c) or $b = 0.740$ seen elsewhere (M1A0 for $\frac{2521}{3407}$ or awrt 0.7	74 here)	
(d)	M1 for 1326.25 – ('their b' × 2423.75) Condone fractions or awrt 1330 for \overline{m} and awr A1 for a correct equation in m and v with $a = awrt - 467$ and $b = awrt 0.74$ Condone $\frac{2521}{3407}$ for b and $\frac{-1591740}{3407}$ for a. [Equation in y and x is A0]	t 2420 fo	or v
(e)	1 st B1 for a correct definition of the rate in words. Must state or imply "money per	visitor"	
	Allow alternative words or symbols e.g. £ or "pounds" for money, "people" for	visitors	etc
	2^{nd} B1ft for a correct numerical rate (ft their value of b)		
	e.g. "each <u>visitor spends</u> £740" is B1B1, "b is the extra <u>money</u> spent per <u>visitor</u> " is B1B0 [no v	/alues]	
	" <i>b</i> is increase of <u>£0.74 million</u> in <i>m</i> as <i>v</i> increases <u>by 1000</u> " is B0B1[£ for money but no "visit "increase in <u>m</u> as <u>v</u> increases" is B0B0 [Idea of rate but letters not words and no numerical values of the set		te]
(f)	M1 sub. $v = 2500$ into <u>their</u> equation. Simply substituting 2 500 000 is M0 (unless ac	ljusted e	eqn)
	A1 awrt 1380 units (£ and million not required)		
(g)	1 st B1 for 2500 or 2 500 000 or visitors or v is in range. "it" is B0 unless v clearly in	nplied	
	2^{nd} dB1 for stating it is reliable. Dependent on previous B mark being awarded		
	"both <i>v</i> and <i>m</i> in range" or "1380 in range" is B0 but use ISW so "interpolation since brange" scores B1 for the "interpolation". "Not extrapolation" counts as "interpolation"		

Question Number	Scheme	Marks
4 (a)	0.02 B $P(J_{n}B) = 0.005 \text{ or } \frac{1}{200}$	M1
	$J = 0.98$ B' P(JAB') = 0.245 or $\frac{49}{200}$	
	0.25 0.45 k 0.03 B P(KnB) = 0.0135 or 27 2000	A1
	0.97 B' $P(knB') = 0.4365 \text{ or } \frac{873}{2000}$	
	0.3 $L = 0.05 B P(LAB) = 0.015 or \frac{3}{200}$	
	0.3 L 0.05 B $P(LAB) = 0.015$ or $\frac{3}{200}$ 0.95 B' $P(LAB') = 0.285$ or $\frac{57}{200}$	(2)
(b)	0.25×0.98 , = 0.245 (or exact equiv. e.g. $\frac{49}{200}$)	M1A1
(c)	$0.25 \times 0.02 + 0.45 \times 0.03 + 0.3 \times 0.05$, = 0.0335 (or exact equiv. e.g. $\frac{67}{2000}$)	(2)
(0)	$0.25 \times 0.02 + 0.45 \times 0.03 + 0.3 \times 0.05$, = 0.0335 (or exact equiv. e.g. $\frac{67}{2000}$)	M1A1 (2)
(d)	$[P(J \cup L B)] = \frac{0.25 \times 0.02 + 0.3 \times 0.05}{0.0335} \qquad \underline{\text{or}} \frac{0.0335 - 0.45 \times 0.03}{0.0335}$	M1A1ft
	= 0.5970 awrt 0.597 (or $\frac{40}{67}$ or exact equiv.)	A1
		(3)
	Notes	Total 9
(a)	Allow fractions or percentages throughout this question Allow 3+6 tree diagram with the 6 correct "end" probs and labels to get $2/2$ (1 st , 3 rd , 5 th M1 for (3+6) tree drawn with 0.25, 0.45, 0.02, 0.03, 0.05 on correct branches	gets M1)
	 A1 for (0.3, 0.98, 0.97, 0.95 on the correct branches and labels, condone missing B's Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability p" for M1 and A1ft they must have 0 	1
(b)	M1 for $0.25 \times$ 'their 0.98' o.e.	
(c)	M1 for $0.25 \times \text{their } 0.02 + 0.45 \times \text{their } 0.03 + \text{their } 0.3 \times \text{their } 0.05$ Condone 1 transcript <u>Or</u> $1 - (0.25 \times \text{their } 0.98 + 0.45 \times \text{their } 0.97 + \text{their } 0.3 \times \text{their } 0.95)$	tion error.
(d)	M1 for use of conditional probability with their (c) as denominator. Also exactly 2 pro- num' and at least one correct (or correct ft) <u>or</u> their (c) – one of the products from Ignore an incorrect expression inside their probability statement	
	A1ft for $\frac{0.25 \times \text{their } 0.02 + \text{their } 0.3 \times \text{their } 0.05}{\text{their(c)}} \underline{\text{or}} \frac{\text{their } (c) - 0.45 \times \text{their } 0.03}{\text{their } (c)} \underline{\text{or}} \frac{0.25 \times \text{their } 0.03}{\text{their } (c)} \underline{\text{or}} \frac{10.25 \times \text{their } 0.03}{\text{their } (c)} \underline{\text{their } (c)} \underline{\text{their } (c)} \underline{\text{their } (c)} \underline{\text{or}} \frac{10.25 \times \text{their } 0.03}{\text{their } (c)} \underline{\text{their } (c)} \text{thei$	02 r (c)
	A1 awrt 0.597 or exact fraction e.g. $\frac{40}{67}$	

Question Number						
5 (a)	2k + 4k + 6k + k(8 - 2) = 1 (commas instead of + or a table OK if $18k = 1$ seen later)					
	$k = \frac{1}{18} (*)$					
(b)	$[2k+4k] = \frac{6}{18} = \frac{1}{3}$ ($\frac{1}{3}$ or any exact <u>numerical</u> equivalent)	B1 (1)				
(c)	$E(X) = \left(2 \times \frac{1}{9}\right) + \left(4 \times \frac{2}{9}\right) + \left(6 \times \frac{1}{3}\right) + \left(8 \times \frac{1}{3}\right) \underline{or} \left(2 \times 2k\right) + \left(4 \times 4k\right) + \left(6 \times 6k\right) + \left(8 \times 6k\right)$					
	$=5\frac{7}{9}$ (or exact equivalent e.g. $\frac{52}{9}$)	A1 (2)				
(d)	$\mathbf{E}(X^2) = \left(4 \times \frac{1}{9}\right) + \left(16 \times \frac{2}{9}\right) + \left(36 \times \frac{1}{3}\right) + \left(64 \times \frac{1}{3}\right) \underline{\mathbf{or}} \left(4 \times 2k\right) + \left(16 \times 4k\right) + \left(36 \times 6k\right) + \left(64 \times 6k\right)$	M1				
	$= 37\frac{1}{3}$ (or exact equivalent e.g. $\frac{112}{3}$)	A1 (2)				
(e)	(e) Var (X) = $37\frac{1}{3} - \left(5\frac{7}{9}\right)^2$ [= 3.95 or $\frac{320}{81}$]					
	$Var(3-4X) = 16 \times 3.95$	M1				
	= awrt 63.2 (allow $\frac{5120}{81}$)	A1 (3)				
	Notes					
(a)	$\underbrace{\text{Or}}_{\text{Or}} \qquad \text{M1 for } 2k + 4k + 6k + k(8 - 2) = 1 \qquad \text{A1 for } k = \frac{1}{18} \text{ NB cso so no incorrect work}$ $\underbrace{\text{M1 for } 2 \times \frac{1}{18} + 4 \times \frac{1}{18} + 6 \times \frac{1}{18} + \frac{1}{18}(8 - 2) \qquad \text{A1 for = 1 and "therefore } k = \frac{1}{18}"$	ing seen				
(c)	 If in parts (c), (d) and (e) there is a correct expression worthy of M1 but later they incorrectly go on and multiply or divide by some number <i>n</i>, then allow the M1 but mark their <u>final</u> answer (A0) Answers only in (b), (c), (d) and (e) score all the marks. M1 for an expression for E(X) with at least 3 correct terms (products) allow use of k e.g. 104k 					
(d)	M1 for an expression for $E(X^2)$ with at least 3 correct terms (products) allow use of k e.g. 672k A1 for any exact equivalent only. E.g. 37.3 is A0 but, of course, 37.3 is OK					
(e)	1 st M1 for $E(X^2) - [E(X)]^2$ ft their answers to (c) and (d). Must see values <u>used</u> correct	ly.				
	2 nd M1 for statement " $4^2 \times Var(X)$ "seen <u>or</u> for $4^2 \times$ their Var(X) provided their Var(X) > 0 Do not allow for $16 \times E(X^2)$ but can score M0M1					
	NB condone $-4^2 \times Var(X)$ if the answer later becomes positive.					
	A1 for exact fraction $\left(\frac{5120}{81} \text{ o.e.}\right)$ or decimal approximation that is awrt 63.2					
	Beware: rounding to 3sf in (c) (5.78) and (d) (37.3) gives 62.3 which could be misread as 63.2					

Question Number	Scheme					
6 (a)	70 – 80 group - width 0.5 (cm)	B1				
	1.5 cm ² is 10 customers or 3.75 cm ² is 25 customers or $0.5c = 3.75$ or $\frac{2.5}{\frac{1}{3}}$	M1				
	70 – 80 group - height 7.5 (cm)	A1 (2)				
(b)	Median = $(70) + \frac{13.5}{25} \times 10$ allow $(n+1) = (70) + \frac{14}{25} \times 10$	(3) M1				
	= 75.4 (or if using $(n + 1)$ allow 75.6)	A1 (2)				
(c)	$\left[\text{Mean } = \frac{6460}{85} \right] = 76$	B1				
	$\sigma = \sqrt{\frac{529400}{85} - 76^2}$	M1				
	= 21.2658 (s = 21.3920) awrt 21.3	A1 (3)				
(d)	Coeff' of skewness = $\frac{3(76 - 75.4)}{21.2658}$ = 0.08464 awrt 0.08 (awrt 0.06 for 75.6)	M1 A1				
	There is (very slight) positive skew or the data is almost symmetrical (or both) <u>Any</u> mention of "correlation" is B0	B1ft (3)				
	Notes	Total 11				
(a)						
(4)	 B1 for 0.5 M1 for one of the given statements <u>or</u> any method where "their width" × "their height" = 3.75 Correct height scores M1A1 independent of width so B0M1A1 is possible. 					
(b)	M1 for a correct fraction: $+\frac{k}{25} \times 10$ where $k = 13.5$ or 14 for $(n + 1)$ case.					
	NB may work down so look out for (80) $-\frac{11.5}{25} \times 10$ etc Beware: $69.5 + \frac{13.5}{25} \times 11 = 75.44$	(but M0)				
(c)	M1 for a correct expression with square root, ft their mean A1 for awrt 21.3 or, if clearly using <i>s</i> allow awrt 21.4. Must be evaluatedno surds.					
(d)	M1 sub. their values into formula allow use of <i>s</i> but their σ or <i>s</i> must be > 0 A1 for awrt 0.08 but accept 0.085 No fraction B1ft for a correct comment compatible with their coefficient. Allow "symmetrical" for coeff' < 0.25 They may say it is "slightly skew" so omit "positive" but do not allow "negative" if	coef' +ve				
	Condone "strongly" positive skew.					

Question Number	Scheme	Marks			
7 (a)	The random variable $H \sim$ height of females $P(H > 170) = P\left(Z > \frac{170 - 160}{8}\right) [= P(Z > 1.25)]$				
	= 1 - 0.8944 = 0.1056 (calc 0.1056498) awrt 0.106 (accept 10.6%)	M1 A1 (3)			
(b)	$P(H > 180) = P(Z > \frac{180 - 160}{8}) [= 1 - 0.9938]$	M1			
	$= 0.0062 (calc \ 0.006209) \qquad awrt \ 0.0062 \ or \ \frac{31}{5000}$	A1			
	$[P(H > 180 H > 170)] = \frac{0.0062}{0.1056}$	M1			
	= 0.0587 (calc 0.0587760) awrt 0.0587 or 0.0588	A1 (4)			
(c)	$P(H > h H > 170) (= 0.5)$ <u>or</u> $\frac{P(H > h)}{P(H > 170)} (= 0.5)$	M1			
	$[P(H > h)] = 0.5 \times "0.1056" = 0.0528 \text{ (calc } 0.0528249) \text{ or } [P(H < h)] = 0.9472$	A1ft			
	$\frac{h-160}{8} = 1.62$ (calc 1.6180592)	M1 B1			
	h = awrt 173 cm awrt 173	A1 (5)			
		Total 12			
(0)	Notes 170 160				
(a)	1 st M1 for attempt at standardising with 170, 160 and 8. Allow \pm i.e. for $\pm \frac{170-160}{8}$				
	2^{nd} M1 for attempting $1 - p$ where $0.8 . Correct answer only 3/3$				
(b)	 1st M1 for standardising with 180, 160 and 8 1st A1 for 0.0062 seen, maybe seen as part of another expression/calculation. 				
	2^{nd} M1 using conditional probability with denom = their (a) and num < their denom. <u>Values</u> needed. 2^{nd} A1 for awrt 0.0587 or 0.0588. Condone 5.87% or 5.88% or $\frac{31}{528}$ Correct answer only 4/4				
(c)	1 st M1 for a correct conditional probability statement. Either line and don't insist on 0	.5, ft (a)			
	1 st A1ft for $[P(H > h)] = 0.5 \times \text{their}(a)$ Award M1A1ft for correct evaluation of $0.5 \times \text{their}(a)$ or sight of 0.0528 or better				
	2^{nd} M1 for attempt to standardise (\pm) with 160 and 8 and set equal to $\pm z$ value (1.56 < $ z $ < 1.68)				
	B1 for $(z =)$ awrt ± 1.62 (seen)				
	2^{nd} A1 for awrt 173 but dependent on <u>both</u> M marks.				

Question Number	Scheme						
8 (a)	[P(A) = 1 - 0.18 -	alent)	B1				
(b)	$P(A \cup B) = "0.6" + 0.22 = 0.82$ (or exact equivalent)						
(c)	$x = \mathbf{P}(A \cap B)$	Use $P(B)P(A' B)$	$P = P(A' \cap B)$	Establish independence before or after 1 st M1and score marks for (d) (RH ver)	(1) M1		
	$\frac{x}{x+0.22} = 0.6$	$P(B) \times [1 - 0.6] = 0.$	22	Find P(B)			
	x = 0.6x + 0.132	Use $P(A \cap B) = P(A \cap B)$	(B)P(B)	Use $P(B)P(A) = P(A \cap B)$	dM1		
	0.4x = 0.132	$P(A \cap B) = 0.6 \times 0.$	55	$P(A \cap B) = 0.6 \times 0.55$			
		x = 0.33 (or	r exact equivalent)		Alcso		
(d)	P(B) = 0.55				(3)		
(u)	P(B) = 0.55 $P(B) \times P(A) = 0.55 \times 0.6$ or stating $P(A) = P(A B) [= 0.6]$			M1			
	= 0.3						
	$P(B) \times P(A) = P(A \cap B)$ or $P(A) = P(A B)$		Alcso				
	therefore (statistically) independent therefore (statistically) independent				(2)		
			Nadar		Total 7		
(b)	Notes(b) B1ftfor their (a) + 0.22 or $1 - P(A' \cap B')$ Do not ft their (a) if it is > 0.78						
	B1ft for their (a) + 0.22 or $1 - P(A' \cap B')$ Do not ft their (a) if it is > 0.78 NB 3 versions for (c). Check carefully that Ms are genuinely scored.						
			-	e •	l properly		
(c)	Look out for <u>assuming independence</u> and if you see $P(B) = 0.55$ check it is <u>derived</u> properly 1 st M1 for a correct equation for <i>x</i> e.g. $\frac{x}{x+0.22} = 0.6$ or a correctly derived equation for $P(B)$						
	2 nd dM1 for solving to get in form $kx = L$ or correct use of P(B) to find P(A \cap B) [2 nd or 3 rd ver] or P(A \cap B) = P(B) - 0.22						
(1)		Dep. on <u>both</u> Ms ar		0	(h - h		
(d)	M1 for finding $P(B) \times P(A) = 0.33$ (values needed) <u>or stating $P(A) = P(A B)$ (= 0.6 not needed)</u> A loss for a correct statement $P(B) \times P(A) = P(A \cap B)$ or $P(A) = P(A B)$ and stating independent.						
	A1cso for a correct statement: $P(B) \times P(A) = P(A \cap B)$ or $P(A) = P(A B)$ and stating ind NB. The M1 in (d) using $P(A \cap B)$ requires $P(B) = 0.55$						
	NB The M1 in (d) using $P(A \cap B)$ requires $P(B) = 0.55$ There is no ft of an incorrect $P(B)$ Full marks in (d) is OK even if 0/3 in (c)				B		
	{This Venn diagram may be helpful.}						