Statistics S1

Advanced/Advanced Subsidiary

Tuesday 10 June 2014 - Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)
Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.
Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
This paper has 8 questions.
The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. A random sample of 35 homeowners was taken from each of the villages Greenslax and Penville and their ages were recorded. The results are summarised in the back-to-back stem and leaf diagram below.

Key: $7|3| 1$ means 37 years for Greenslax and 31 years for Penville
Some of the quartiles for these two distributions are given in the table below.

	Greenslax	Penville
Lower quartile, Q_{1}	a	31
Median, Q_{2}	64	39
Upper quartile, Q_{3}	b	55

(a) Find the value of a and the value of b.

An outlier is a value that falls either

> more than $1.5 \times(Q 3-Q 1)$ above $Q 3$
> or more than $1.5 \times(Q 3-Q 1)$ below $Q 1$
(b) On the graph paper on the next page draw a box plot to represent the data from Penville. Show clearly any outliers.
(c) State the skewness of each distribution. Justify your answers.

Question 1(b) graph paper

2. The mark, x, scored by each student who sat a statistics examination is coded using

$$
y=1.4 x-20
$$

The coded marks have mean 60.8 and standard deviation 6.60.
Find the mean and the standard deviation of x.
(4)
3. The table shows data on the number of visitors to the UK in a month, v (1000s), and the amount of money they spent, m ($£$ millions), for each of 8 months.

Number of visitors $v(1000 \mathrm{~s})$	2450	2480	2540	2420	2350	2290	2400	2460
Amount of money spent $m(£$ millions $)$	1370	1350	1400	1330	1270	1210	1330	1350

You may use
$S_{v v}=42587.5 \quad S_{v m}=31512.5 \quad S_{m m}=25187.5 \quad \Sigma_{V}=19390 \quad \Sigma m=10610$
(a) Find the product moment correlation coefficient between m and v.
(b) Give a reason to support fitting a regression model of the form $m=a+b v$ to these data.
(c) Find the value of b correct to 3 decimal places.
(d) Find the equation of the regression line of m on v.
(e) Interpret your value of b.
(f) Use your answer to part (d) to estimate the amount of money spent when the number of visitors to the UK in a month is 2500000 .
(g) Comment on the reliability of your estimate in part (f). Give a reason for your answer.
4. In a factory, three machines, J, K and L, are used to make biscuits.

Machine J makes 25% of the biscuits.
Machine K makes 45% of the biscuits.
The rest of the biscuits are made by machine L.
It is known that 2% of the biscuits made by machine J are broken, 3% of the biscuits made by machine K are broken and 5% of the biscuits made by machine L are broken.
(a) Draw a tree diagram to illustrate all the possible outcomes and associated probabilities.

A biscuit is selected at random.
(b) Calculate the probability that the biscuit is made by machine J and is not broken.
(c) Calculate the probability that the biscuit is broken.
(d) Given that the biscuit is broken, find the probability that it was not made by machine K.
5. The discrete random variable X has the probability function

$$
P(X=x)= \begin{cases}k x & x=2,4,6 \\ k(x-2) & x=8 \\ 0 & \text { otherwise }\end{cases}
$$

where k is a constant.
(a) Show that $k=\frac{1}{18}$.
(b) Find the exact value of $\mathrm{F}(5)$.
(c) Find the exact value of $\mathrm{E}(X)$.
(d) Find the exact value of $\mathrm{E}\left(X^{2}\right)$.
(e) Calculate $\operatorname{Var}(3-4 X)$ giving your answer to 3 significant figures.
6. The times, in seconds, spent in a queue at a supermarket by 85 randomly selected customers, are summarised in the table below.

Time (seconds)	Number of customers, f
$0-30$	2
$30-60$	10
$60-70$	17
$70-80$	25
$80-100$	25
$100-150$	6

A histogram was drawn to represent these data. The $30-60$ group was represented by a bar of width 1.5 cm and height 1 cm .
(a) Find the width and the height of the $70-80$ group.
(b) Use linear interpolation to estimate the median of this distribution.

Given that x denotes the midpoint of each group in the table and

$$
\Sigma f x=6460 \quad \Sigma f_{x}=529400
$$

(c) calculate an estimate for
(i) the mean,
(ii) the standard deviation,
for the above data.

One measure of skewness is given by

$$
\text { coefficient of skewness }=\frac{3(\text { mean }- \text { median })}{\text { standard deviation }}
$$

(d) Evaluate this coefficient and comment on the skewness of these data.
7. The heights of adult females are normally distributed with mean 160 cm and standard deviation 8 cm .
(a) Find the probability that a randomly selected adult female has a height greater than 170 cm .

Any adult female whose height is greater than 170 cm is defined as tall.
An adult female is chosen at random. Given that she is tall,
(b) find the probability that she has a height greater than 180 cm .

Half of tall adult females have a height greater than $h \mathrm{~cm}$.
(c) Find the value of h.
8. For the events A and B,

$$
\mathrm{P}\left(A^{\prime} \cap B\right)=0.22 \text { and } \mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=0.18
$$

(a) Find $\mathrm{P}(A)$.
(b) Find $\mathrm{P}(A \cup B)$.

Given that $\mathrm{P}(A \mid B)=0.6$,
(c) find $\mathrm{P}(A \cap B)$.
(d) Determine whether or not A and B are independent.

Question Number	Scheme	Marks
2		$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & (4) \\ \text { Total } 4\end{array}$
	Notes	
	$1^{\text {st }} \mathrm{M} 1$ sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean $1^{\text {st }} \mathrm{A} 1$ for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is $2 / 2$ $2^{\text {nd }}$ M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^{2}=1.4^{2} x^{2}$ is M0 until we see them take a square root. $2^{\text {nd }} \mathrm{A} 1$ for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is $2 / 2$	

Question Number	Scheme	Marks
3	$r=\frac{31512.5}{\sqrt{42587.5 \times 25187.5}}=0.962 \quad \text { awrt } \mathbf{0 . 9 6 2}$	M1 A1 (2)
	r is close to 1 or a strong correlation. ["points are close to a straight line" isB0] [Just "positive" correlation is B0] [Use of "relationship" or "skew" not "correlation" is B0]	B1
	$b=\frac{31512.5}{42587.5}=0.739947 \ldots=0.740(3 \mathrm{dp}) \quad \mathbf{0 . 7 4 0} \text { (only) }$	M1 A1cao
		(2)
	$a=1326.25-(0.7399 \ldots \times 2423.75) \quad[=-467.2 \quad$ or awrt -467$]$	M1
	So $\quad m=-467+0.74 v$	A1 (2)
	b is the money (spent) per visitor. (i.e. definition of a rate in words.)[ignore values] So each 1000 visitors generates an extra $£ 0.74$ million or each visitor spends $£ 740$ oe	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1ft } \end{array}$
	$\begin{aligned} & m=-467+0.74 \times 2500 \\ & m=1383(£ \text { million }) \end{aligned}$ awrt 1380	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
		(2)
	As 2500 is within the range of the data set or it involves interpolation. The value of money spent is reliable	$\begin{array}{\|l} \mathrm{B} 1 \\ \text { dB1 } \tag{2} \end{array}$
		Total 13
	Notes	
(a)	M1 for a correct expression for r. Ans only of 0.96 or awrt 0.96 is M1A0 Ans only of 0.962 or awrt 0.962 is M1A1. Do not allow fractions for A1	
(b)	B1 for comment implying strong correlation. (e.g. big/high/clear etc) B0 if $\|r\|>1$	
(c)	A1 A1 for 0.740 only in (c) or $b=0.740$ seen elsewhere (M1A0 for $\frac{2521}{3407}$ or awrt 0.74 here)	
(d)	M1 for 1326.25 - ('their b ' $\times 2423.75$) Condone fractions or awrt 1330 for \bar{m} and awrt 2420 for \bar{v} A1 for a correct equation in m and v with $a=$ awrt -467 and $b=$ awrt 0.74 Condone $\frac{2521}{3407}$ for b and $\frac{-159170}{3407}$ for a. [Equation in y and x is A0]	
(e)	$1^{\text {st }} \mathrm{B} 1$ for a correct definition of the rate in words. Must state or imply "money per visitor" Allow alternative words or symbols e.g. $£$ or "pounds" for money, "people" for visitors etc $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ for a correct numerical rate (ft their value of b) e.g. "each visitor spends $£ 740$ " is B1B1, " b is the extra money spent per visitor" is B1B0 [no values] " b is increase of $£ 0.74$ million in m as v increases by 1000 " is B0B1[$£$ for money but no "visitors"] "increase in \underline{m} as \underline{v} increases" is B0B0 [Idea of rate but letters not words and no numerical value of rate]	
(f)	M1 sub. $v=2500$ into their equation. Simply substituting 2500000 is M0 (unless adjusted eqn) A1 awrt 1380 units ($£$ and million not required)	
(g)	$1^{\text {st }} \mathrm{B} 1 \quad$ for 2500 or 2500000 or visitors or v is in range. "it" is B0 unless v clearly in $2^{\text {nd }} \mathrm{dB} 1$ for stating it is reliable. Dependent on previous B mark being awarded "both v and m in range" or "1380 in range" is B0 but use ISW so "interpolation since range" scores B1 for the "interpolation". "Not extrapolation" counts as "interpolation"	plied both in

Question Number	Scheme	Marks
4 (a)		M1
(b)	$0.25 \times 0.98, \quad=\mathbf{0 . 2 4 5}\left(\text { or exact equiv. e.g. } \frac{49}{200}\right)$	M1A1 (2)
(c)	$0.25 \times 0.02+0.45 \times 0.03+0.3 \times 0.05, \quad=\mathbf{0 . 0 3 3 5}\left(\right.$ or exact equiv. e.g. $\frac{67}{2000}$)	M1A1 (2)
(d)	$[\mathrm{P}(J \cup L \mid B)]=\frac{0.25 \times 0.02+0.3 \times 0.05}{0.0335} \quad \text { or } \quad \frac{0.0335-0.45 \times 0.03}{0.0335}$	M1A1ft
	$=0.5970 \ldots \quad$ awrt $\mathbf{0 . 5 9 7}$ (or $\frac{40}{67}$ or exact equiv.)	A1
		(3)
	Notes	Total 9
(a) (b) (c) (d)	Allow fractions or percentages throughout this question Allow $3+6$ tree diagram with the 6 correct "end" probs and labels to get $2 / 2\left(1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}\right.$ gets M1) M1 for (3+6) tree drawn with $0.25,0.45,0.02,0.03,0.05$ on correct branches A1 for $0.3,0.98,0.97,0.95$ on the correct branches and labels, condone missing $B^{\prime} \mathrm{s}$ Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability \boldsymbol{p} " for M1 and A1ft they must have $0<\boldsymbol{p}<1$ M1 for $0.25 \times$ 'their 0.98^{\prime} o.e. M1 for $0.25 \times$ their $0.02+0.45 \times$ their $0.03+$ their $0.3 \times$ their 0.05 Condone 1 transcription error. Or $1-(0.25 \times$ their $0.98+0.45 \times$ their $0.97+$ their $0.3 \times$ their 0.95$)$ M1 for use of conditional probability with their (c) as denominator. Also exactly 2 products on num' and at least one correct (or correct ft) or their (c) - one of the products from their (c). Ignore an incorrect expression inside their probability statement A 1 ft for $\frac{0.25 \times \text { their } 0.02+\text { their } 0.3 \times \text { their } 0.05}{\text { their }(\mathrm{c})}$ or $\frac{\text { their }(\mathrm{c})-0.45 \times \text { their } 0.03}{\text { their }(\mathrm{c})}$ or $\frac{0.02}{\text { their }(\mathrm{c})}$ A1 awrt 0.597 or exact fraction e.g. $\frac{40}{67}$	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline \multirow[t]{11}{*}{} \& \(2 k+4 k+6 k+k(8-2)=1 \quad(\) commas instead of + or a table OK if \(18 k=1\) seen later \()\)
\[
\begin{equation*}
k=\frac{1}{18} \tag{*}
\end{equation*}
\] \& \begin{tabular}{l}
M1 \\
Alcso \\
(2)
\end{tabular} \\
\hline \& \([2 k+4 k]=\frac{6}{18}=\frac{1}{3} \quad\left(\frac{1}{3}\right.\) or any exact numerical equivalent) \& \begin{tabular}{l}
B1 \\
(1)
\end{tabular} \\
\hline \& \[
\mathrm{E}(X)=\left(2 \times \frac{1}{9}\right)+\left(4 \times \frac{2}{9}\right)+\left(6 \times \frac{1}{3}\right)+\left(8 \times \frac{1}{3}\right) \text { or }(2 \times 2 k)+(4 \times 4 k)+(6 \times 6 k)+(8 \times 6 k)
\] \& M1 \\
\hline \& \(=5 \frac{7}{9} \quad\) (or exact equivalent e.g. \(\frac{52}{9} \quad\)) \& A1 \\
\hline \& \[
\mathrm{E}\left(X^{2}\right)=\left(4 \times \frac{1}{9}\right)+\left(16 \times \frac{2}{9}\right)+\left(36 \times \frac{1}{3}\right)+\left(64 \times \frac{1}{3}\right) \underline{\text { or }}(4 \times 2 k)+(16 \times 4 k)+(36 \times 6 k)+(64 \times 6 k)
\] \& M1 \\
\hline \& \(=37 \frac{1}{3} \quad\) (or exact equivalent e.g. \(\frac{112}{3}\)) \& \begin{tabular}{l}
A1 \\
(2)
\end{tabular} \\
\hline \& \[
\operatorname{Var}(X)=37 \frac{1}{3}-\left(5 \frac{7}{9}\right)^{2} \quad\left[=3.95 \ldots \text { or } \frac{320}{81}\right]
\] \& M1 \\
\hline \& \(\operatorname{Var}(3-4 X)=16 \times 3.95 \ldots\) \& \\
\hline \& \(=\) awrt 63.2 (allow \(\frac{5120}{81}\)) \& A1 (3) \\
\hline \& \& Total 10 \\
\hline \& Notes \& \\
\hline \multirow[t]{6}{*}{(a)

(c)
(d)

(e)} \& \multicolumn{2}{|l|}{\multirow[t]{6}{*}{| M1 for $2 k+4 k+6 k+k(8-2)=1 \quad$ A1 for $k=\frac{1}{18} \quad$ NB cso so no incorrect working seen |
| :--- |
| or |
| M1 for $2 \times \frac{1}{18}+4 \times \frac{1}{18}+6 \times \frac{1}{18}+\frac{1}{18}(8-2) \quad$ A1 for $=1$ and "therefore $k=\frac{1}{18}$ " |
| If in parts (c), (d) and (e) there is a correct expression worthy of M1 but later they incorrectly go on and multiply or divide by some number n, then allow the M1 but mark their final answer (A0) |
| Answers only in (b), (c), (d) and (e) score all the marks. |
| M1 for an expression for $\mathrm{E}(X)$ with at least 3 correct terms (products) allow use of k e.g. 104k |
| M1 for an expression for $\mathrm{E}\left(X^{2}\right)$ with at least 3 correct terms (products) allow use of k e.g. $672 k$ |
| A1 for any exact equivalent only. E.g. 37.3 is A0 but, of course, $37 . \dot{3}$ is OK |
| $1^{\text {st }} \mathrm{M} 1$ for $\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \mathrm{ft}$ their answers to (c) and (d). Must see values used correctly. |
| $2^{\text {nd }}$ M1 for statement " $4^{2} \times \operatorname{Var}(X)$ "seen or for $4^{2} \times$ their $\operatorname{Var}(X)$ provided their $\operatorname{Var}(X)>0$ |
| Do not allow for $16 \times \mathrm{E}\left(X^{2}\right)$ but can score M0M1 |
| NB condone $-4^{2} \times \operatorname{Var}(X)$ if the answer later becomes positive. |
| A1 for exact fraction ($\frac{5120}{81}$ o.e.) or decimal approximation that is awrt 63.2 |
| Beware: rounding to 3 sf in (c) (5.78) and (d) (37.3) gives 62.3 which could be misread as 63.2 |}}

\hline \& \&

\hline \& \&

\hline \& \&

\hline \& \&

\hline \& \&

\hline
\end{tabular}

Question Number	Scheme	Marks
6 (a)	$70-80$ group - width $\mathbf{0 . 5}(\mathrm{cm})$ $1.5 \mathrm{~cm}^{2}$ is 10 customers or $3.75 \mathrm{~cm}^{2}$ is 25 customers or $0.5 c=3.75$ or $\frac{2.5}{\frac{1}{3}}$ $70-80$ group - height $7.5(\mathrm{~cm})$	B1 M1 A1
	$\begin{aligned} \text { Median } & =(70)+\frac{13.5}{25} \times 10 \text { allow }(n+1)=(70)+\frac{14}{25} \times 10 \\ & =75.4(\text { or if using }(n+1) \text { allow } 75.6) \end{aligned}$	M1 A1 (2)
	$\left[\text { Mean }=\frac{6460}{85}\right]=76$	B1
	$\begin{aligned} \sigma & =\sqrt{\frac{229400}{85}-76^{2}} \\ & =21.2658 \ldots \ldots . \quad(s=21.3920) \end{aligned}$ awrt 21.3	M1 A1
	Coeff' of skewness $=\frac{3(76-75.4)}{21.2658 \ldots}=0.08464 \ldots \quad$ awrt $\mathbf{0 . 0 8} \quad$ (awrt 0.06 for 75.6)	M1 A1
	There is (very slight) positive skew or the data is almost symmetrical (or both) Any mention of "correlation" is B0	B1ft (3)
		Total 11
	Notes	
(a)	M1 for one of the given statements or any method where "their width" \times "their height" $=3.75$ Correct height scores M1A1 independent of width so B0M1A1 is possible.	
(b)	M1 for a correct fraction: $+\frac{k}{25} \times 10$ where $k=13.5$ or 14 for $(n+1)$ case. NB may work down so look out for (80) $-\frac{11.5}{25} \times 10$ etc Beware: $69.5+\frac{13.5}{25} \times 11=75.4$	(but M0)
(c)	M1 for a correct expression with square root, ft their mean A1 for awrt 21.3 or, if clearly using s allow awrt 21.4. Must be evaluated...no surds.	
(d)	M1 sub. their values into formula allow use of s but their σ or s must be >0 A1 for awrt 0.08 but accept 0.085 No fraction B1ft for a correct comment compatible with their coefficient. Allow "symmetrical" for \mid coeff" $\mid<0.25$ They may say it is "slightly skew" so omit "positive" but do not allow "negative" if coef" +ve Condone "strongly" positive skew.	

Question Number	Scheme	Marks
7 (a)	The random variable $H \sim$ height of females $\begin{aligned} \mathrm{P}(H>170) & =\mathrm{P}\left(Z>\frac{170-160}{8}\right) \quad[=\mathrm{P}(Z>1.25)] \\ & =1-0.8944 \\ & =0.1056 \quad(\text { calc } 0.1056498 \ldots) \quad \text { awrt } \mathbf{0 . 1 0 6} \text { (accept } 10.6 \%) \end{aligned}$	M1 M1 A1 (3)
	$\begin{aligned} \mathrm{P}(H>180) & =\mathrm{P}\left(Z>\frac{180-160}{8}\right) \quad[=1-0.9938] \\ & =0.0062 \quad(\text { calc } 0.006209 \ldots) \quad \text { awrt } 0.0062 \text { or } \frac{31}{5000} \end{aligned}$	M1 A1
	$[\mathrm{P}(H>180 \mid H>170)]=\frac{0.0062}{0.1056}$	M1
	$=0.0587 \quad \text { (calc } 0.0587760 \ldots) \quad \text { awrt } 0.0587 \text { or } \mathbf{0 . 0 5 8 8}$	A1 (4)
	$\mathrm{P}(H>h \mid H>170)(=0.5) \quad \text { or } \quad \frac{\mathrm{P}(H>h)}{\mathrm{P}(H>170)}(=0.5)$	M1
	$[\mathrm{P}(H>h)]=0.5 \times " 0.1056 "=0.0528(\text { calc } 0.0528249 \ldots) \text { or }[\mathrm{P}(H<h)]=0.9472$	A1ft
	$\frac{h-160}{8}=1.62$ (calc 1.6180592..)	M1 B1
	$h=$ awrt 173 cm awrt 173	A1 (5)
		Total 12
	Notes	
(a) (b) (c)	$1^{\text {st }}$ M1 for attempt at standardising with 170,160 and 8 . Allow \pm i.e. for $\pm \frac{170-160}{8}$ $2^{\text {nd }}$ M1 for attempting $1-p$ where $0.8<p<1$. Correct answer only $3 / 3$ $1^{\text {st }}$ M1 for standardising with 180,160 and 8 $1^{\text {st }} \mathrm{A} 1$ for 0.0062 seen, maybe seen as part of another expression/calculation. $2^{\text {nd }}$ M1 using conditional probability with denom $=$ their (a) and num < their denom. Values $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.0587 or 0.0588 . Condone 5.87% or 5.88% or $\frac{31}{528}$ Correct answer only $4 / 4$ $1^{\text {st }} \mathrm{M} 1$ for a correct conditional probability statement. Either line and don't insist on 0 $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $[\mathrm{P}(H>h)]=0.5 \times$ their (a) Award M1A1ft for correct evaluation of $0.5 \times$ their (a) or sight of 0.0528 or better $2^{\text {nd }}$ M1 for attempt to standardise (\pm) with 160 and 8 and set equal to $\pm z$ value $(1.56<$ B1 for $(z=)$ awrt ± 1.62 (seen) $2^{\text {nd }}$ A1 for awrt 173 but dependent on both M marks.	eded. 5, ft (a) $z \mid<1.68)$

