Paper Reference(s)

6683/01

Edexcel GCE

Statistics S1

Advanced Subsidiary

Friday 17 May 2013 - Morning
 Time: 1 hour 30 minutes

Materials required for examination
Items included with question papers
Mathematical Formulae (Pink) Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.
Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
Full marks may be obtained for answers to ALL questions.
This paper has 6 questions.
The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. A meteorologist believes that there is a relationship between the height above sea level, $h \mathrm{~m}$, and the air temperature, $t^{\circ} \mathrm{C}$. Data is collected at the same time from 9 different places on the same mountain. The data is summarised in the table below.

h	1400	1100	260	840	900	550	1230	100	770
t	3	10	20	9	10	13	5	24	16

[You may assume that $\quad \Sigma h=7150, \quad \Sigma t=110, \quad \Sigma h^{2}=7171500, \quad \Sigma t^{2}=1716, \quad \Sigma t h=64980$ and Stt = 371.56]
(a) Calculate $\mathrm{S}_{\text {th }}$ and $\mathrm{S}_{h h}$. Give your answers to 3 significant figures.
(b) Calculate the product moment correlation coefficient for this data.
(c) State whether or not your value supports the use of a regression equation to predict the air temperature at different heights on this mountain. Give a reason for your answer.
(d) Find the equation of the regression line of t on h giving your answer in the form $t=a+b h$.
(e) Interpret the value of b.
(f) Estimate the difference in air temperature between a height of 500 m and a height of 1000 m .
2. The marks of a group of female students in a statistics test are summarised in Figure 1.

Figure 1
(a) Write down the mark which is exceeded by 75% of the female students.

The marks of a group of male students in the same statistics test are summarised by the stem and leaf diagram below.

Mark	(2\|6 means 26)	Totals
1	4	(1)
2	6	(1)
3	447	(3)
4	066778	(6)
5	001113677	(9)
6	223338	(6)
7	008	(3)
8	5	(1)
9	0	(1)

(b) Find the median and interquartile range of the marks of the male students.

An outlier is a mark that is
either more than $1.5 \times$ interquartile range above the upper quartile
or more than $1.5 \times$ interquartile range below the lower quartile.
(c) On graph paper draw a box plot to represent the marks of the male students, indicating clearly any outliers.
(d) Compare and contrast the marks of the male and the female students.
3. In a company the 200 employees are classified as full-time workers, part-time workers or contractors.

The table below shows the number of employees in each category and whether they walk to work or use some form of transport.

	Walk	Transport
Full-time worker	2	8
Part-time worker	35	75
Contractor	30	50

The events F, H and C are that an employee is a full-time worker, part-time worker or contractor respectively. Let W be the event that an employee walks to work.

An employee is selected at random.
Find
(a) $\mathrm{P}(H)$
(b) $\mathrm{P}\left([F \cap W]^{\prime}\right)$
(c) $\mathrm{P}(W \mid C)$

Let B be the event that an employee uses the bus.
Given that 10% of full-time workers use the bus, 30% of part-time workers use the bus and 20% of contractors use the bus,
(d) draw a Venn diagram to represent the events F, H, C and B,
(e) find the probability that a randomly selected employee uses the bus to travel to work.
4. The following table summarises the times, t minutes to the nearest minute, recorded for a group of students to complete an exam.

Time (minutes) t	$11-20$	$21-25$	$26-30$	$31-35$	$36-45$	$46-60$
Number of students f	62	88	16	13	11	10

[You may use $\sum \mathrm{ft}^{2}=134281.25$]
(a) Estimate the mean and standard deviation of these data.
(5)
(b) Use linear interpolation to estimate the value of the median.
(2)
(c) Show that the estimated value of the lower quartile is 18.6 to 3 significant figures.
(1)
(d) Estimate the interquartile range of this distribution.
(e) Give a reason why the mean and standard deviation are not the most appropriate summary statistics to use with these data.

The person timing the exam made an error and each student actually took 5 minutes less than the times recorded above. The table below summarises the actual times.

Time (minutes) t	$6-15$	$16-20$	$21-25$	$26-30$	$31-40$	$41-55$
Number of students f	62	88	16	13	11	10

(f) Without further calculations, explain the effect this would have on each of the estimates found in parts (a), (b), (c) and (d).
5. A biased die with six faces is rolled. The discrete random variable X represents the score on the uppermost face. The probability distribution of X is shown in the table below.

x	1	2	3	4	5	6
$\mathrm{P}(X=x)$	a	a	a	b	b	0.3

(a) Given that $\mathrm{E}(X)=4.2$ find the value of a and the value of b.
(5)
(b) Show that $\mathrm{E}\left(X^{2}\right)=20.4$.
(c) Find $\operatorname{Var}(5-3 X)$.
(3)

A biased die with five faces is rolled. The discrete random variable Y represents the score which is uppermost. The cumulative distribution function of Y is shown in the table below.

y	1	2	3	4	5
$\mathrm{~F}(y)$	$\frac{1}{10}$	$\frac{2}{10}$	$3 k$	$4 k$	$5 k$

(d) Find the value of k.
(e) Find the probability distribution of Y.

Each die is rolled once. The scores on the two dice are independent.
(f) Find the probability that the sum of the two scores equals 2.
6. The weight, in grams, of beans in a tin is normally distributed with mean μ and standard deviation 7.8.

Given that 10% of tins contain less than 200 g , find
(a) the value of μ,
(b) the percentage of tins that contain more than 225 g of beans.

The machine settings are adjusted so that the weight, in grams, of beans in a tin is normally distributed with mean 205 and standard deviation σ.
(c) Given that 98% of tins contain between 200 g and 210 g find the value of σ.

END

Question	Scheme	Marks
1. $\begin{array}{rr}\text { (a) } \\ & \text { (b) } \\ & \text { (c) } \\ & \text { (d) } \\ \\ \text { (e) }\end{array}$	$\begin{array}{lr} \left(\mathrm{S}_{t h}\right)=64980-\frac{7150 \times 110}{9}=-22408.9 \ldots & \underline{\mathbf{2 2 4 0 0}} \\ \left(\mathrm{~S}_{h h}\right)=7171500-\frac{7150^{2}}{9}=1491222.2 \ldots & \underline{\mathbf{1 4 9 0 0 0 0}} \end{array}$	M1 A1 A1
	$r=\frac{-22408.9}{\sqrt{1491222 \times 371.56}} \quad=-0.95200068 \ldots \quad \text { awrt }-\underline{\mathbf{0 . 9 5 2}}$	M1A1
	Yes as r is close to -1 (if $-1<r<-0.5$) or Yes as r is close to 1 (if $1>r>0.5$) [If $-0.5 \leq r \leq 0.5$ allow "no since r is close to 0 "] [If $\|r\|>1$ award B0]	B1ft
	$\begin{aligned} & b=\frac{-22408.9}{1491222.2}=-0.015027 \ldots \quad\left(\text { allow } \frac{-56}{3725}\right) \quad \text { awrt }-0.015 \\ & a=\frac{110}{9}-\text { "their } b " \times \frac{7150}{9}=(12.2--0.015 \times 794.4),=24.1604 \ldots \text { so } t=24.2-\mathbf{0 . 0 1 5 h} \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1, A1 } \end{aligned}$
	0.015 is the drop in temp, (in ${ }^{0} \mathrm{C}$), for every $1(\mathrm{~m})$ increase in height above sea level.	B1
	$\begin{aligned} \text { Change } & =(" 24.2-0.015 " \times 500)-(" 24.2-0.015 " \times 1000) \text { or } 500 \times " 0.015 " \\ & = \pm 7.5 \quad(\text { awrt } \pm 7.5) \quad(\text { only ft a value }<100) \end{aligned}$	M1 A1ft (2) (13 marks)
	Notes	
(a)	M1 for at least one correct expression (condone transcription error) $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{S}_{h h}=$ awrt 1490000 or $\mathrm{S}_{t h}=$ awrt -22400 (Condone $S_{x x}$ or $S_{x y}=\ldots$ or $2^{\text {nd }} \mathrm{A} 1$ for $\mathrm{S}_{t h}=-22400$ and $\mathrm{S}_{h h}=1490000$ only. [This mark is assessing corr (Allow no labels but mis-labelling $\mathrm{S}_{t h}$ as $\mathrm{S}_{h h}$ etc loses the final A1)	$\text { even } S_{y y}=\ldots \text {) }$ ect rounding
	M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digits. Must have their $\mathrm{S}_{h h}, \mathrm{~S}_{t h}$ and given $\mathrm{S}_{t t}$ (3sf or better) in the correct places. Condone Award M1A0 for awrt -0.95 with no expression seen. M0 for 64980 \qquad	missing "-"
(c)	B1ft must comment on supporting and state: high/strong/clear (negative or positive) correlation "points lie close to a straight line" is B0 since there is no evidence of this.	
(d)	$1^{\text {st }} \mathrm{M} 1$ for a correct expression for b. Follow through their $\mathrm{S}_{h h} \& \mathrm{~S}_{t h}$. Condone missing "-" $1^{\text {st }} \mathrm{A} 1$ for awrt -0.015 or allow exact fraction from rounded values. $2^{\text {nd }} \mathrm{M} 1$ for a correct method for a. Follow through their value of b $2^{\text {nd }}$ A1 for a correct equation for t and h with $a=$ awrt 24.2 and $b=$ awrt -0.015 No fractions	
(e)	B1 Must mention h (or height) and (or temperature) and their (1 sf) value of b in a correct comment	
(f)	M1 for a correct expression seen based on their equation. Allow transcription error of 1 digit. If answer is $500 \times$ their b to 2 sf and <100 (M1A1), If answer is $500 \times$ their b to 2 sf and ≥ 100 (M1A0)	

Question	Scheme	Marks
6. (a)	[Let X be the amount of beans in a tin. $\mathrm{P}(X<200)=0.1$] $\begin{aligned} \frac{200-\mu}{7.8} & =-1.2816 \\ \mu & =209.996 \ldots . \end{aligned}$	M1 B1 A1
(b)	$\begin{aligned} \mathrm{P}(X>225) & =\mathrm{P}\left(Z>\frac{225-" 210 "}{7.8}\right) \\ & =\mathrm{P}(Z>1.92) \quad \text { or } 1-\mathrm{P}(Z<1.92) \\ & =1-0.9726 \quad=0.0274 \text { (or bette) } \\ & =0.0274 \end{aligned}$ (allow 1.93) $=1-0.9726=0.0274 \text { (or better) } \quad \text { [calc gives } 0.0272037 \ldots \text {] }$ $=\text { awrt } \underline{\underline{2.7 \%}} \text { allow } \underline{0.027}$	M1
(c)	[Let Y be the new amount of beans in a tin] $\begin{aligned} \frac{210-205}{\sigma} & =2.3263 \quad \text { or } \quad \frac{200-205}{\sigma}=-2.3263 \quad \text { [calc gives } 2.3263478 \ldots \text {] } \\ \sigma & =\frac{5}{2.3263} \\ \sigma & =2.15 \quad(2.14933 \ldots) \end{aligned}$	M1 B1 dM1 A1 (4) (10 marks)
	Notes	
(a)	Condone poor handling of notation if answers are correct but A marks must have correct working. M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set $= \pm$ any z value $(\|z\|>1)$ B1 for $z= \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102...) or better seen] A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working - sign scores A0 If answer is awrt 210 and $209.996 \ldots$ or better seen then award M1B1A1 $z=1.28$ gives 209.984 and $z=1.282$ gives 209.9996 and both score M1B0A1 If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z=1.2816$ is seen)	
(b)	M1 for attempting to standardise with 225, their mean and 7.8. Allow \pm $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{Z}>$ awrt $1.92 / 3$. Allow a diagram but must have $1.92 / 3$ and correct area indicated. Must have the Z so $\mathrm{P}(X>225)$ with or without a diagram is not sufficient. Award for 1-0.9726 or 1-0.9732 $2^{\text {nd }} \mathrm{A} 1$ for 2.7% or better (calculator gives $2.72 \ldots$) Allow awrt 0.027 . Correct ans scores $3 / 3$ $1^{\text {st }}$ M1 for an attempt to standardise with 200 or 210, 205 and σ and set $= \pm$ any z value $(\|z\|>2)$ B1 for $z=2.3263$ (or better) and compatible signs. If B0 in (a) for using a value in $[1.28,1.29$) but not using 1.2816: allow awrt 2.33 here $2^{\text {nd }}$ dM1 Dependent on the first M1 for correctly rearranging to make $\sigma=\ldots$ May be implied e.g. $\frac{5}{\sigma}=2.32 \rightarrow \sigma=2.16$ (M1A0) BUT must have $\sigma>0$ A1 for awrt 2.15. Must follow from correct working but a range of possible z values will do. NB $2.320<z \leq 2.331$ will give an answer of awrt 2.15	
(c)		

